Identifying Land-Use Related Potential Disaster Risk Drivers in the Ayeyarwady Delta (Myanmar) during the Last 50 Years (1974–2021) Using a Hybrid Ensemble Learning Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Hybrid Ensemble Model and Change Detection
2.4. Accuracy Assessment
2.5. Intensity Analysis
3. Results
3.1. Multiple Classifier System Accuracies
3.2. Characterizing Land Use Dynamics
3.3. Identifying Potential Disaster Risk Drivers Related to LULCC
3.3.1. Urban Growth
3.3.2. Agricultural Transition
3.3.3. Deforestation
3.3.4. Expansion of Cultivated Aquatic Surfaces
4. Discussion
4.1. Land-Use Related Potential Disaster Risk Drivers in the Ayeyarwady Delta
4.2. Hybrid Ensemble Classification for Long-Term and Multi-Temporal LULCC Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Fries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The Causes of Land-Use and Land-Cover Change: Moving beyond the Myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Crutzen, P.J. Geology of Mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global Land Use Changes Are Four Times Greater than Previously Estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- O’Keefe, P.; Westgate, K.; Wisner, B. Taking the Naturalness out of Natural Disasters. Nature 1976, 260, 566–567. [Google Scholar] [CrossRef] [Green Version]
- UNISDR. Natural Disasters and Sustainable Development: Understanding the Links Between Development, Environment and Natural Disasters; Background Paper No. 5; United Nations International Strategy for Disaster Reduction: New York, NY, USA, 2002; p. 10. [Google Scholar]
- Lewis, J. The Good, The Bad and The Ugly: Disaster Risk Reduction (DRR) Versus Disaster Risk Creation (DRC). PLoS Curr. 2012, 4, e4f8d4eaec6af8. [Google Scholar] [CrossRef] [PubMed]
- Kelman, I. Lost for Words Amongst Disaster Risk Science Vocabulary? Int. J. Disaster Risk Sci. 2018, 9, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Chmutina, K.; Meding, J. A Dilemma of Language: “Natural Disasters” in Academic Literature. Int. J. Disaster Risk Sci. 2019, 10, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Raju, E.; Boyd, E.; Otto, F. Stop Blaming the Climate for Disasters. Commun. Earth Env. 2022, 3, 1. [Google Scholar] [CrossRef]
- Black, R.; Busby, J.; Dabelko, G.D.; Coning, C.; Maalim, H.; McAllister, C.; Ndiloseh, M.; Smith, D.; Alvarado Cóbar, J.F.; Barnhoorn, A. Environment of Peace: Security in a New Era of Risk; Stockholm International Peace Research Institute: Stockholm, Sweden, 2022. [Google Scholar]
- Lavell, A.; Maskrey, A. The Future of Disaster Risk Management. Environ. Hazards 2014, 13, 267–280. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR). Underlying Disaster Risk Drivers. Available online: https://www.undrr.org/terminology/underlying-disaster-risk-drivers (accessed on 11 June 2022).
- United Nations International Strategy for Disaster Reduction (UNISDR). Global Assessment Report on Disaster Risk Reduction 2009: Risk and Poverty in a Changing Climate: Invest. Today for a Safer Tomorrow; United Nations: Geneva, Switzerland, 2009. [Google Scholar]
- United Nations International Strategy for Disaster Reduction (UNISDR). Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations: Geneva, Switzerland, 2015; p. 37. [Google Scholar]
- Su, Q.; Chen, K.; Liao, L. The Impact of Land Use Change on Disaster Risk from the Perspective of Efficiency. Sustainability 2021, 13, 3151. [Google Scholar] [CrossRef]
- Nicholls, J.R.; Adger, N.W.; Hutton, W.C.; Hanson, E.S. (Eds.) Deltas in the Anthropocene; Springer International Publishing: Cham, Germany, 2020; ISBN 978-3-030-23516-1. [Google Scholar]
- Edmonds, D.A.; Caldwell, R.L.; Brondizio, E.S.; Siani, S.M.O. Coastal Flooding Will Disproportionately Impact People on River Deltas. Nat. Commun. 2020, 11, 4741. [Google Scholar] [CrossRef] [PubMed]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H. A Global Empirical Typology of Anthropogenic Drivers of Environmental Change in Deltas. Sustain. Sci. 2016, 11, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate Change: Protect the World’s Deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, D.A.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Törnqvist, T.E. Global-Scale Human Impact on Delta Morphology Has Led to Net Land Area Gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garschagen, M.; Revilla Diez, J.; Dang, K.N.; Kraas, F. Mekong Delta: Between the Prospects for Progress and the Realms of Reality. In The Mekong Delta System; Renaud, F.G., Kuenzer, C., Eds.; Springer Environmental Science and Engineering; Springer: Dordrecht, The Netherlands, 2012; pp. 83–132. ISBN 978-94-007-3961-1. [Google Scholar]
- Kuenzer, C.; Heimhuber, V.; Huth, J.; Dech, S. Remote Sensing for the Quantification of Land Surface Dynamics in Large River Delta Regions—A Review. Remote Sens. 2019, 11, 1985. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.J.; Clarke, D.; Nicholls, R.J.; Wadey, M.P. Estimating the Long-Term Historic Evolution of Exposure to Flooding of Coastal Populations. Nat. Hazards Earth Syst. Sci. 2015, 15, 1215–1229. [Google Scholar] [CrossRef] [Green Version]
- Kraas, F. (Ed.) Mega Cities, Mega Challenge: Informal Dynamics of Global Change: Insights from Dhaka, Bangladesh and Pearl River Delta, China; Borntraeger Science Publishers: Stuttgart, Germany, 2019; ISBN 978-3-443-01103-1. [Google Scholar]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling Risk and Sustainability in Coastal Deltas of the World. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirzaei, M.; Freymueller, J.; Törnqvist, T.E.; Galloway, D.L.; Dura, T.; Minderhoud, P.S.J. Measuring, Modelling and Projecting Coastal Land Subsidence. Nat. Rev. Earth Environ. 2021, 2, 40–58. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Coumou, L.; Erban, L.E.; Middelkoop, H.; Stouthamer, E.; Addink, E.A. The Relation between Land Use and Subsidence in the Vietnamese Mekong Delta. Sci. Total Environ. 2018, 634, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Giosan, L.; Naing, T.; Min Tun, M.; Clift, P.D.; Filip, F.; Constantinescu, S.; Khonde, N.; Blusztajn, J.; Buylaert, J.-P.; Stevens, T. On the Holocene Evolution of the Ayeyawady Megadelta. Earth Surf. Dynam. 2018, 6, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.J.; Besset, M.; Dussouillez, P.; Goichot, M.; Loisel, H. Overview of the Monsoon-Influenced Ayeyarwady River Delta, and Delta Shoreline Mobility in Response to Changing Fluvial Sediment Supply. Mar. Geol. 2019, 417, 106038. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Park, E.; Kästner, K. The Ayeyarwady River (Myanmar): Washload Transport and Its Global Role among Rivers in the Anthropocene. PLoS ONE 2021, 16, e0251156. [Google Scholar] [CrossRef]
- Adas, M. The Burma Delta: Economic Development and Social Change on an Asian Rice Frontier, 1852–1941; New Perspectives in Southeast Asian Studies; University of Wisconsin Press: Madison, WI, USA, 2011; ISBN 978-0-299-28354-4. [Google Scholar]
- Heymann, J.; Löffler, E. Mangrove Degradation in the Ayeyarwady Delta, Myanmar. Petermanns Geogr. Mitt. 1997, 141, 291–306. [Google Scholar]
- Lwin, N.N.; Zaw, K.; Nyein, K.T.; Thandar, M. Agricultural Transformation, Institutional Changes, and Rural Development in Ayeyarwady Delta, Myanmar. In Agricultural Development, Trade & Regional Cooperation in Developing East Asia; Intal, P.S., Jr., Oum, S., Simorangkir, M.J.O., Eds.; Economic Research Institute for ASEAN and East Asia (ERIA): Jakarta, Indonesia, 2011; pp. 307–355. ISBN 978-602-8660-43-3. [Google Scholar]
- Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the Conservation Implications of an Internationally-Engaged Myanmar. Glob. Environ. Chang. 2014, 24, 321–333. [Google Scholar] [CrossRef]
- Kraas, F. Ökonomische Transformationen im Delta des Ayeyarwady/Myanmar. Geogr. Rundsch. 2016, 68, 24–29. [Google Scholar]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T. Challenges and Opportunities in Mapping Land Use Intensity Globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- De Leeuw, J.; Georgiadou, Y.; Kerle, N.; Gier, A.; Inoue, Y.; Ferwerda, J.; Smies, M.; Narantuya, D. The Function of Remote Sensing in Support of Environmental Policy. Remote Sens. 2010, 2, 1731–1750. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K. Satellite Remote Sensing for Disaster Management Support: A Holistic and Staged Approach Based on Case Studies in Sentinel Asia. Int. J. Disaster Risk Reduct. 2019, 33, 417–432. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Omori, K.; Oo, A.N.; Zaw, Y.N. Monitoring Saline Intrusion in the Ayeyarwady Delta, Myanmar, Using Data from the Sentinel-2 Satellite Mission. Paddy Water Environ. 2021, 19, 283–294. [Google Scholar] [CrossRef]
- Khaing, S.S.; Aung, S.W.Y.; Aung, S.T. Analysis of Environmental Change Detection Using Satellite Images (Case Study: Irrawaddy Delta, Myanmar). In Big Data Analysis and Deep Learning Applications; Zin, T.T., Lin, J.C.-W., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 744, pp. 355–363. ISBN 9789811308680. [Google Scholar]
- Hedley, P.J.; Bird, M.I.; Robinson, R.A.J. Evolution of the Irrawaddy Delta Region since 1850: Evolution of the Irrawaddy Delta Region since 1850. Geogr. J. 2010, 176, 138–149. [Google Scholar] [CrossRef]
- Chen, D.; Li, X.; Saito, Y.; Liu, J.P.; Duan, Y.; Liu, S.; Zhang, L. Recent Evolution of the Irrawaddy (Ayeyarwady) Delta and the Impacts of Anthropogenic Activities: A Review and Remote Sensing Survey. Geomorphology 2020, 365, 107231. [Google Scholar] [CrossRef]
- Salmivaara, A.; Kummu, M.; Keskinen, M.; Varis, O. Using Global Datasets to Create Environmental Profiles for Data-Poor Regions: A Case from the Irrawaddy and Salween River Basins. Environ. Manag. 2013, 51, 897–911. [Google Scholar] [CrossRef] [PubMed]
- De Alban, J.; Prescott, G.; Woods, K.; Jamaludin, J.; Latt, K.; Lim, C.; Maung, A.; Webb, E. Integrating Analytical Frameworks to Investigate Land-Cover Regime Shifts in Dynamic Landscapes. Sustainability 2019, 11, 1139. [Google Scholar] [CrossRef] [Green Version]
- Quost, B.; Masson, M.-H.; Denœux, T. Classifier Fusion in the Dempster–Shafer Framework Using Optimized t-Norm Based Combination Rules. Int. J. Approx. Reason. 2011, 52, 353–374. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Xia, J.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple Classifier System for Remote Sensing Image Classification: A Review. Sensors 2012, 12, 4764–4792. [Google Scholar] [CrossRef]
- Nyi Nyi. Articles on the Physiography of Burma; Geological Society, Arts and Science University: Yangon, Myanmar, 1967. [Google Scholar]
- Bender, F. Geology of Burma; Schweizerbart Science Publishers: Stuttgart, Germany, 1983; ISBN 978-3-443-11016-1. [Google Scholar]
- Hla Tun Aung. Myanmar. The Study of Processes and Patters; National Centre for Human Resource Development, Publishing Committee, Ministry of Education: Yangon, Myanmar, 2003.
- Kraas, F.; Spohner, R.; Aye Aye Myint. Socio-Economic Atlas of Myanmar; Franz Steiner: Stuttgart, Germany, 2017; ISBN 978-3-515-11625-1. [Google Scholar]
- Robinson, R.A.J.; Bird, M.I.; Nay Win Oo; Hoey, T.B.; Maung Maung Aye; Higgitt, D.L.; Win, S.L. The Irrawaddy River Sediment Flux to the Indian Ocean: The Original Nineteenth-Century Data Revisited. J. Geol. 2007, 115, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Bird, M.I.; Robinson, R.A.J.; Nay Win Oo; Maung Maung Aye; Lu, X.X.; Higgitt, D.L.; Hoey, T.B. Preliminary Estimate of Organic Carbon Transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) Rivers of Myanmar. Quat. Int. 2008, 186, 113–122. [Google Scholar] [CrossRef]
- Furuichi, T.; Win, Z.; Wasson, R.J. Discharge and Suspended Sediment Transport in the Ayeyarwady River, Myanmar: Centennial and Decadal Changes. Hydrol. Process. 2009, 23, 1631–1641. [Google Scholar] [CrossRef]
- Fee, L.; Gibert, M.; Bartlett, R.; Capizzi, P.; Horton, R.; Lesk, C. Climate Change Vulnerability Assessment of Labutta Township, Myanmar, 2016–2050: Scenarios for Building Resilience; UN-Habitat-UN Environment: Nairobi, Kenya, 2017; p. 170. [Google Scholar]
- Kraas, F.; Khin Khin Han. Climate: Temperature and Precipitation. In Socio-Economic Atlas of Myanmar; Kraas, F., Spohner, R., Aye Aye Myint, Eds.; Franz Steiner: Stuttgart, Germany, 2017; pp. 44–47. ISBN 978-3-515-11623-7. [Google Scholar]
- Mie Sein, Z.M.; Ullah, I.; Saleem, F.; Zhi, X.; Syed, S.; Azam, K. Interdecadal Variability in Myanmar Rainfall in the Monsoon Season (May–October) Using Eigen Methods. Water 2021, 13, 729. [Google Scholar] [CrossRef]
- Besset, M.; Anthony, E.J.; Dussouillez, P.; Goichot, M. The Impact of Cyclone Nargis on the Ayeyarwady (Irrawaddy) River Delta Shoreline and Nearshore Zone (Myanmar): Towards Degraded Delta Resilience? Comptes Rendus Geosci. 2017, 349, 238–247. [Google Scholar] [CrossRef]
- Taft, L.; Evers, M. A Review of Current and Possible Future Human–Water Dynamics in Myanmar’s River Basins. Hydrol. Earth Syst. Sci. 2016, 20, 4913–4928. [Google Scholar] [CrossRef] [Green Version]
- Chhin, R.; Shwe, M.M.; Yoden, S. Time-lagged Correlations Associated with Interannual Variations of Pre-monsoon and Post-monsoon Precipitation in Myanmar and the Indochina Peninsula. Int. J. Clim. 2020, 40, 3792–3812. [Google Scholar] [CrossRef]
- Nay Win Oo. Present State and Problems of Mangrove Management in Myanmar. Trees 2002, 16, 218–223. [Google Scholar] [CrossRef]
- HIC. Ayeyarwady State of the Basin Assessment (SOBA) 2017: Synthesis Report, Volume 1; Hydro-Informatics Centre: Yangon, Myanmar, 2017; p. 251. [Google Scholar]
- The 2014 Myanmar Population and Housing Census. States and Region. Reports; Ministry of Immigration and Population (MoIP): Nay Pyi Taw, Myanmar, 2015.
- Kraas, F.; Gaese, H.; Mi Mi Kyi. Megacity Yangon: Transformation Processes and Modern Developments, Second German-Myanmar Workshop in Yangon/Myanmar 2005; LIT: Münster, Germany, 2006; Volume 7, ISBN 3-8258-0042-3. [Google Scholar]
- Kraas, F.; Yin May; Zin Nwe Myint. Yangon/Myanmar: Transformation Processes and Mega-Urban Developments. Geogr. Rundsch. Int. 2010, 6, 26–37. [Google Scholar]
- Kraas, F.; Aung Kyaw; Nay Win Oo. Agricultural Regions. In Socio-Economic Atlas of Myanmar; Kraas, F., Spohner, R., Aye Aye Myint, Eds.; Franz Steiner: Stuttgart, Germany, 2017; pp. 112–115. ISBN 978-3-515-11623-7. [Google Scholar]
- Kraas, F.; Nilar Aung; Khin Khin Soe. Aquaculture. In Socio-Economic Atlas of Myanmar; Kraas, F., Spohner, R., Aye Aye Myint, Eds.; Franz Steiner Verlag: Stuttgart, Germany, 2017; pp. 118–121. ISBN 978-3-515-11623-7. [Google Scholar]
- Khin Khin Soe. Climate Change Effects on Agriculture in Thabaung Township, Ayeyarwady Region, Myanmar: Challenges and Perceptions of Farmers. IOP Conf. Ser. Earth Environ. Sci. 2020, 451, 012030. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L. Sinking Deltas Due to Human Activities. Nat. Geosci 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Karakus, P.; Karabork, H. Effect Of Pansharpened Image On Some Of Pixel Based And Object Based Classification Accuracy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, J.K.; Kemp, J.; van Niekerk, A. Effect of Pan-Sharpening Multi-Temporal Landsat 8 Imagery for Crop Type Differentiation Using Different Classification Techniques. Comput. Electron. Agric. 2017, 134, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Ottinger, M.; Kuenzer, C.; Liu, G.; Wang, S.; Dech, S. Monitoring Land Cover Dynamics in the Yellow River Delta from 1995 to 2010 Based on Landsat 5 TM. Appl. Geogr. 2013, 44, 53–68. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Martín, M.P.; Gómez, I.; Chuvieco, E. Performance of a Burned-Area Index (BAIM) for Mapping Mediterranean Burned Scars from MODIS Data. In Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, Zaragoza, Spain, 16–18 June 2005; pp. 193–198. [Google Scholar]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Majumdar, D.S.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An Index for Discrimination of Mangroves from Non-Mangroves Using LANDSAT 8 OLI Imagery. MethodsX 2018, 5, 1129–1139. [Google Scholar] [CrossRef]
- Yancho, J.; Jones, T.; Gandhi, S.; Ferster, C.; Lin, A.; Glass, L. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sens. 2020, 12, 3758. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Chatziantoniou, A.; Psomiadis, E.; Petropoulos, G. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Mather, P.M. An Assessment of the Effectiveness of Decision Tree Methods for Land Cover Classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Cieszewski, C.J.; Madden, M.; Borders, B.E. K Nearest Neighbor Method for Forest Inventory Using Remote Sensing Data. GIScience Remote Sens. 2007, 44, 149–165. [Google Scholar] [CrossRef]
- Yager, R.R. An Extension of the Naive Bayesian Classifier. Inf. Sci. 2006, 176, 577–588. [Google Scholar] [CrossRef]
- Orfeo ToolBox (OTB) FusionOfClassifications—Orfeo ToolBox 8.0.1 Documentation. Available online: https://www.orfeotoolbox.org/CookBook/Applications/app_FusionOfClassifications.html (accessed on 12 June 2022).
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity Analysis to Unify Measurements of Size and Stationarity of Land Changes by Interval, Category, and Transition. Landsc. Urban. Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Fritz, H.M.; Blount, C.D.; Thwin, S.; Thu, M.K.; Chan, N. Cyclone Nargis Storm Surge in Myanmar. Nat. Geosci 2009, 2, 448–449. [Google Scholar] [CrossRef]
- Renaud, F.G.; Syvitski, J.P.; Sebesvari, Z.; Werners, S.E.; Kremer, H.; Kuenzer, C.; Ramesh, R.; Jeuken, A.; Friedrich, J. Tipping from the Holocene to the Anthropocene: How Threatened Are Major World Deltas? Curr. Opin. Environ. Sustain. 2013, 5, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Radford, S.; Lamb, V. Work and Struggle of Fishing Livelihoods in the Delta: Development and ‘New’ Change along the Ayeyarwady (Irrawaddy) River, Myanmar. Asia Pac. Viewp. 2020, 61, 338–352. [Google Scholar] [CrossRef]
- Dunn, F.E.; Minderhoud, P.S.J. Sedimentation Strategies Provide Effective but Limited Mitigation of Relative Sea-Level Rise in the Mekong Delta. Commun. Earth Environ. 2022, 3, 2. [Google Scholar] [CrossRef]
- Horst, T.; Rutten, M.M.; Giesen, N.C.; Hanssen, R.F. Monitoring Land Subsidence in Yangon, Myanmar Using Sentinel-1 Persistent Scatterer Interferometry and Assessment of Driving Mechanisms. Remote Sens. Environ. 2018, 217, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Omori, K.; Oo, A.N.; Ma, S.S.; Zaw, Y.N. Decadal Changes in the Rice-Cropping System in the Ayeyarwady Delta Using a Large Archive of Satellite Imagery from 1981 to 2020. Paddy Water Environ. 2021, 19, 295–306. [Google Scholar] [CrossRef]
- International Bank for Reconstruction and Development (IBRD). Appraisal of Irrigation I Project Burma; Irrigation and Area Development I Division Asia Projects Department: Washington, DC, USA, 1974; p. 142. [Google Scholar]
- World Bank Group Archives. Burma-Lower Burma Paddyland Development Project-Project Completion Repor-July 1986; World Bank Group Archives: Washington, DC, USA, 1986; p. 75. [Google Scholar]
- Ivars, B.; Venot, J.-P. Grounded and Global: Water Infrastructure Development and Policymaking in the Ayeyarwady Delta, Myanmar. Water Altern. 2019, 12, 1038–1063. [Google Scholar]
- Schneider, P.; Asch, F. Rice Production and Food Security in Asian Mega Deltas—A Review on Characteristics, Vulnerabilities and Agricultural Adaptation Options to Cope with Climate Change. J. Agro Crop. Sci 2020, 206, 491–503. [Google Scholar] [CrossRef]
- Seinn Seinn, M.U.; Ahmad, M.M.; Thapa, G.B.; Shrestha, R.P. Farmers’ Adaptation to Rainfall Variability and Salinity through Agronomic Practices in Lower Ayeyarwady Delta, Myanmar. J. Earth Sci. Clim. Chang. 2015, 6, 1. [Google Scholar] [CrossRef]
- Lar, N.M.; Arunrat, N.; Tint, S.; Pumijumnong, N. Assessment of the Potential Climate Change on Rice Yield in Lower Ayeyarwady Delta of Myanmar Using EPIC Model. Environ. Nat. Resour. J. 2018, 16, 45–57. [Google Scholar] [CrossRef]
- Kattelus, M.; Rahaman, M.M.; Varis, O. Myanmar under Reform: Emerging Pressures on Water, Energy and Food Security. Nat. Resour. Forum. 2014, 38, 85–98. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Yang, R.; Luo, Y.; Yang, K.; Hong, L.; Zhou, X. Analysis of Forest Deforestation and Its Driving Factors in Myanmar from 1988 to 2017. Sustainability 2019, 11, 3047. [Google Scholar] [CrossRef] [Green Version]
- Zin Nwe Myint. Woodfuel Uses: A Distinct Phenomenon in Megacity Yangon, Myanmar. In Megacity Yangon: Transformation Processes and Modern Developments; Southeast Asian Modernities; Kraas, F., Gaese, H., Mi Mi Kyi, Eds.; Lit Publishers: Berlin, Germany, 2006; Volume 7, pp. 261–284. [Google Scholar]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Veettil, B.K.; Pereira, S.F.R.; Quang, N.X. Rapidly Diminishing Mangrove Forests in Myanmar (Burma): A Review. Hydrobiologia 2018, 822, 19–35. [Google Scholar] [CrossRef]
- Beveridge, M.C.M.; Little, D.C. The History of Aquaculture in Traditional Societies. In Ecological Aquaculture; Costa-Pierce, B.A., Ed.; Blackwell Science Ltd.: Oxford, UK, 2002; pp. 1–29. ISBN 978-0-470-99505-1. [Google Scholar]
- Belton, B.; Hein, A.; Htoo, K.; Kham, L.S.; Nischan, U.; Reardon, T.; Boughton, D. Aquaculture in Transition: Value Chain Transformation, Fish and Food Security in Myanmar; Feed the Future Innovation Lab for Food Security Policy Research Paper 8; Michigan State University: East Lansing, MI, USA, 2015. [Google Scholar]
- Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J.P.M. Land Subsidence at Aquaculture Facilities in the Yellow River Delta, China. Geophys. Res. Lett. 2013, 40, 3898–3902. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Zhang, L.; Chen, K.-H.; Wei, S.-H.; Huang, D.-R.; Lin, S.-H. Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise. Remote Sens. 2017, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, X.; Chen, D.; Duan, Y.; Ji, H.; Zhang, L.; Chai, Q.; Hu, X. Understanding Land Use/Land Cover Dynamics and Impacts of Human Activities in the Mekong Delta over the Last 40 Years. Glob. Ecol. Conserv. 2020, 22, e00991. [Google Scholar] [CrossRef]
- Kuenzer, C.; van Beijma, S.; Gessner, U.; Dech, S. Land Surface Dynamics and Environmental Challenges of the Niger Delta, Africa: Remote Sensing-Based Analyses Spanning Three Decades (1986–2013). Appl. Geogr. 2014, 53, 354–368. [Google Scholar] [CrossRef]
- Nababa, I.; Symeonakis, E.; Koukoulas, S.; Higginbottom, T.; Cavan, G.; Marsden, S. Land Cover Dynamics and Mangrove Degradation in the Niger Delta Region. Remote Sens. 2020, 12, 3619. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J. Effect of Water Surface Area on the Remotely Sensed Water Quality Parameters of Baysh Dam Lake, Saudi Arabia. Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Ottinger, M.; Bachofer, F.; Huth, J.; Kuenzer, C. Mapping Aquaculture Ponds for the Coastal Zone of Asia with Sentinel-1 and Sentinel-2 Time Series. Remote Sens. 2021, 14, 153. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
Time | No. | Date | Scenes | Sensor | Ground Res. | Bands |
---|---|---|---|---|---|---|
1 | 1–2 | 1973/12/18 | 2 | Landsat 1 MSS | 79 m × 79 m 1 | 4 |
3–5 | 1974/02/11 | 3 | Landsat 1 MSS | 79 m × 79 m 1 | 4 | |
2 | 6–8 | 1990/01/11 | 3 | Landsat 5 TM | 30 m × 30 m | 7 |
9–10 | 1990/02/05 | 2 | Landsat 5 TM | 30 m × 30 m | 7 | |
3 | 11–13 | 1995/02/10 | 3 | Landsat 5 TM | 30 m × 30 m | 7 |
14–15 | 1995/02/19 | 2 | Landsat 5 TM | 30 m × 30 m | 7 | |
4 | 16–17 | 2001/02/27 | 2 | Landsat 7 ETM+ | 30 m × 30 m | 8 |
18–20 | 2001/03/06 | 3 | Landsat 7 ETM+ | 30 m × 30 m | 8 | |
5 | 21–23 | 2005/02/05 | 3 | Landsat 5 TM | 30 m × 30 m | 7 |
24–25 | 2005/02/14 | 2 | Landsat 5 TM | 30 m × 30 m | 7 | |
6 | 26–28 | 2010/02/03 | 3 | Landsat 5 TM | 30 m × 30 m | 7 |
29–30 | 2010/02/12 | 2 | Landsat 5 TM | 30 m × 30 m | 7 | |
7 | 31–33 | 2015/02/17 | 3 | Landsat 8 OLI | 30 m × 30 m | 11 |
34–35 | 2015/02/26 | 2 | Landsat 8 OLI | 30 m × 30 m | 11 | |
36–37 | 2015/02/09 | 2 | Sentinel-1A | 20 m × 20 m | VV, VH | |
38–40 | 2015/02/28 | 3 | Sentinel-1A | 20 m × 20 m | VV, VH | |
8 | 41–42 | 2021/02/15 | 2 | Landsat 8 OLI | 30 m × 30 m | 11 |
43–45 | 2021/02/01 | 3 | Landsat 8 OLI | 30 m × 30 m | 11 | |
46–47 | 2021/02/01 | 2 | Sentinel-1A | 20 m × 20 m | VV, VH | |
48–50 | 2021/01/27 | 3 | Sentinel-1A | 20 m × 20 m | VV, VH | |
1–8 | 51 | SRTM 1 Arc-Second Global | (30 m) |
ID | LULC Classes | Description |
---|---|---|
1 | Urban and built-up areas | Sparsely to densely built-up areas, including industrial, commercial, and transportation units as well as urban green areas |
2 | Shrubland | Sparsely vegetated areas, including mosaics of agricultural and natural vegetation in different transition stages |
3 | Forest | Densely vegetated broadleaf forest areas (closed) |
4 | Mangroves | Coastal saline and brackish vegetation |
5 | Dry crops | Non-irrigated farmland (dry-season bare fields), including fallow land and burnt areas |
6 | Irrigated crops | Predominantly irrigated farmland (dry-season grown fields), including early growing and different irrigation stages |
7 | Aquaculture | Cultivated water ponds for inland aquaculture production (mainly fish and shrimps) |
8 | Brine ponds | Shallow salt-water ponds for mineral extraction (mainly salt) |
9 | Water | Inland or marine water courses and water bodies, including water reservoirs |
10 | Sediment plains | Non-vegetated sediment deposit areas, including tidal flats and sand banks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, A.; Seeger, K.; Brill, D.; Brückner, H.; Khin Khin Soe; Nay Win Oo; Nilar Aung; Zin Nwe Myint; Kraas, F. Identifying Land-Use Related Potential Disaster Risk Drivers in the Ayeyarwady Delta (Myanmar) during the Last 50 Years (1974–2021) Using a Hybrid Ensemble Learning Model. Remote Sens. 2022, 14, 3568. https://doi.org/10.3390/rs14153568
Vogel A, Seeger K, Brill D, Brückner H, Khin Khin Soe, Nay Win Oo, Nilar Aung, Zin Nwe Myint, Kraas F. Identifying Land-Use Related Potential Disaster Risk Drivers in the Ayeyarwady Delta (Myanmar) during the Last 50 Years (1974–2021) Using a Hybrid Ensemble Learning Model. Remote Sensing. 2022; 14(15):3568. https://doi.org/10.3390/rs14153568
Chicago/Turabian StyleVogel, Anissa, Katharina Seeger, Dominik Brill, Helmut Brückner, Khin Khin Soe, Nay Win Oo, Nilar Aung, Zin Nwe Myint, and Frauke Kraas. 2022. "Identifying Land-Use Related Potential Disaster Risk Drivers in the Ayeyarwady Delta (Myanmar) during the Last 50 Years (1974–2021) Using a Hybrid Ensemble Learning Model" Remote Sensing 14, no. 15: 3568. https://doi.org/10.3390/rs14153568
APA StyleVogel, A., Seeger, K., Brill, D., Brückner, H., Khin Khin Soe, Nay Win Oo, Nilar Aung, Zin Nwe Myint, & Kraas, F. (2022). Identifying Land-Use Related Potential Disaster Risk Drivers in the Ayeyarwady Delta (Myanmar) during the Last 50 Years (1974–2021) Using a Hybrid Ensemble Learning Model. Remote Sensing, 14(15), 3568. https://doi.org/10.3390/rs14153568