An Approach for Retrieving Consistent Time Series “Urban Core–Suburban-Rural” (USR) Structure Using Nighttime Light Data from DMSP/OLS and NPP/VIIRS
Abstract
:1. Introduction
2. Study Area and Dataset
3. Methods
3.1. Data Preparation
3.2. USR Extraction Based on Gradient Mutation Detection
3.3. Temporal Consistency Check
4. Results
4.1. Performance of the Proposed Method on Different NTL Datasets
4.2. Evaluations of Extracted USR Extent
4.3. Spatiotemporal Analysis of Urbanization in the Study Area
4.3.1. Urban Expansion throughout the Study Period
4.3.2. Transition Patterns of USR Interactions
5. Discussion
5.1. Less Adjustment of VIIRS NTL in Harmonized NTL Time Series Datasets
5.2. Uncertainty in the USR Extraction
5.3. Limitation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grimm, N.B.; Grove, J.G.; Pickett, S.T.A.; Redman, C.L. Integrated Approaches to Long-Term Studies of Urban Ecological Systems: Urban ecological systems present multiple challenges to ecologists—pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. BioScience 2000, 50, 571–584. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.; Kang, Y.; Chen, W.; Zhao, M.; Li, W. Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us? Renew. Sustain. Energy Rev. 2019, 104, 127–136. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of urban morphological characteristics on thermal environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- Xie, P.; Yang, J.; Sun, W.; Xiao, X.; Cecilia Xia, J. Urban scale ventilation analysis based on neighborhood normalized current model. Sustain. Cities Soc. 2022, 80, 103746. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, S.-D.; Zeng, Y.-E.; Wu, B.-W. Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- Luo, X.; Yang, J.; Sun, W.; He, B. Suitability of human settlements in mountainous areas from the perspective of ventilation: A case study of the main urban area of Chongqing. J. Clean. Prod. 2021, 310, 127467. [Google Scholar] [CrossRef]
- Ren, J.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C.; Li, X.; Wang, S. Exploring thermal comfort of urban buildings based on local climate zones. J. Clean. Prod. 2022, 340, 130744. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Xue, B.; Li, Y.; Xiao, X.; Xia, J.; He, B. Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives. Sci. Total Environ. 2021, 795, 148791. [Google Scholar] [CrossRef]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Chen, M.; Ye, C.; Lu, D.; Sui, Y.; Guo, S. Cognition and construction of the theoretical connotations of new urbanization with Chinese characteristics. J. Geogr. Sci. 2019, 29, 1681–1698. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Jiang, G.; Chen, Y.; Qu, Y.; Zhou, T.; Li, W. How feasible is regional integration for reconciling land use conflicts across the urban–rural interface? Evidence from Beijing–Tianjin–Hebei metropolitan region in China. Land Use Policy 2020, 92, 104433. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “Urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Pandey, B.; Joshi, P.K.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Guindon, B.; Zhang, Y.; Dillabaugh, C. Landsat urban mapping based on a combined spectral–spatial methodology. Remote Sens. Environ. 2004, 92, 218–232. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Demarchi, L.; Canters, F.; Chan, J.C.; Voorde, T.V.d. Multiple Endmember Unmixing of CHRIS/Proba Imagery for Mapping Impervious Surfaces in Urban and Suburban Environments. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3409–3424. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Jacquin, A.; Misakova, L.; Gay, M. A hybrid object-based classification approach for mapping urban sprawl in periurban environment. Landsc. Urban Plan. 2008, 84, 152–165. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, C.; Chen, M.; Yang, J.; Ren, H. A Quantile Approach for Retrieving the “Core Urban-Suburban-Rural” (USR) Structure Based on Nighttime Light. Remote Sens. 2020, 12, 4179. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Croft, T. Nighttime Images of the Earth from Space. Sci. Am. 1978, 239, 86–98. [Google Scholar] [CrossRef]
- Song, Y.; Huang, B.; Cai, J.; Chen, B. Dynamic assessments of population exposure to urban greenspace using multi-source big data. Sci. Total Environ. 2018, 634, 1315–1325. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cheng, W.; Zhou, C.; Ma, T.; Li, M.; Huang, K. Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens. Environ. 2020, 248, 111980. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Wang, C.; Zhang, H.; Liao, J.; Ye, Y.; Wang, C. A new method for extracting built-up urban areas using DMSP-OLS nighttime stable lights: A case study in the Pearl River Delta, southern China. GIScience Remote Sens. 2015, 52, 218–238. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. ISPRS J. Photogramm. Remote Sens. 2019, 153, 36–47. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a Series of Consistent Night-Time Light Data (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1843–1856. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban Built-Up Area Extraction From Log- Transformed NPP-VIIRS Nighttime Light Composite Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 2020, 7, 168. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. China Multi-period Land Use Land Cover Remote Sensing Monitoring Data Set (CNLUCC). Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences. 2018. Available online: http://www.resdc.cn/DOI (accessed on 15 October 2021).
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Xia, F.; Bai, Y. Exploring VIIRS Night Light Long-Term Time Series with CNN/SI for Urban Change Detection and Aerosol Monitoring. Remote Sens. 2022, 14, 3126. [Google Scholar] [CrossRef]
- Fiorentin, P.; Cavazzani, S.; Ortolani, S.; Bertolo, A.; Binotto, R. Instrument assessment and atmospheric phenomena in relation to the night sky brightness time series. Measurement 2022, 191, 110823. [Google Scholar] [CrossRef]
- Cavazzani, S.; Ortolani, S.; Bertolo, A.; Binotto, R.; Fiorentin, P.; Carraro, G.; Zitelli, V. Satellite measurements of artificial light at night: Aerosol effects. Mon. Not. R. Astron. Soc. 2020, 499, 5075–5089. [Google Scholar] [CrossRef]
- Sawyer, V.; Levy, R.C.; Mattoo, S.; Cureton, G.; Shi, Y.; Remer, L.A. Continuing the MODIS Dark Target Aerosol Time Series with VIIRS. Remote Sens. 2020, 12, 308. [Google Scholar] [CrossRef] [Green Version]
- Kocifaj, M.; Bará, S. Aerosol characterization using satellite remote sensing of light pollution sources at night. Mon. Not. R. Astron. Soc. Lett. 2020, 495, L76–L80. [Google Scholar] [CrossRef] [Green Version]
City Scale | City | Population Size (10,000 Persons) | Economic Location |
---|---|---|---|
Supercity | Shanghai | 2428.14 | Eastern |
Beijing | 1916.40 | Eastern | |
Tianjin | 1174.44 | Eastern | |
Megacity | Chengdu | 760.63 | Western |
Guangzhou | 719.14 | Eastern | |
Nanjing | 644.84 | Eastern | |
Xi’an | 643.50 | Western | |
Wuhan | 611.30 | Central | |
Large city | Qingdao | 433.94 | Eastern |
Zhengzhou | 416.64 | Central | |
Changchun | 362.09 | Northeastern | |
Taiyuan | 301.93 | Central | |
Urumqi | 225.65 | Western | |
Datong | 122.98 | Central | |
Liaocheng | 114.59 | Eastern | |
Medium-sized city | Shangqiu | 96.38 | Central |
Bengbu | 82.70 | Central | |
Yingkou | 77.70 | Northeastern | |
Small city | Sanya | 32.69 | Eastern |
Satellite/Sensor | Product | Dataset Type | Available Period | Spatial Resolution |
---|---|---|---|---|
DMSP/OLS | Stable light | Time series NTL dataset | 1992–2013 Annually | 30 arc second (~1000 m at the Equator) |
NPP-VIIRS | Annual VNL V2 | Time series NTL dataset | 2012–2020 Annually | 15 arc second (~500 m at the Equator) |
MODIS | MOD44W | Water mask | 2000–2015 Annually | 250 m |
MODIS | MCD12Q1 | LUCC | 2001–2019 Annually | 500 m |
Landsat TM/OLI | 100 m Land use | LUCC | 1995/2000/2005/2010/2015/2020 | 100 m |
Residential Type | Median Deviation | Average Deviation | Pearson’s R | |
---|---|---|---|---|
2012 | Urban | 23.87% | 23.63% | 0.846 |
Suburban | 17.15% | 24.14% | 0.853 | |
Rural | 51.84% | 44.64% | 0.682 | |
2013 | Urban | 21.76% | 21.74% | 0.873 |
Suburban | 26.62% | 28.94% | 0.762 | |
Rural | 45.14% | 44.46% | 0.781 |
Year | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
City | OA | KC | OA | KC | OA | KC | OA | KC | OA | KC | OA | KC | OA | Kappa |
Beijing | 0.975 | 0.748 | 0.972 | 0.735 | 0.963 | 0.713 | 0.951 | 0.699 | 0.941 | 0.676 | 0.943 | 0.709 | 0.958 | 0.713 |
Shanghai | 0.949 | 0.687 | 0.947 | 0.690 | 0.925 | 0.662 | 0.925 | 0.660 | 0.879 | 0.596 | 0.853 | 0.625 | 0.913 | 0.653 |
Tianjin | 0.969 | 0.653 | 0.965 | 0.631 | 0.957 | 0.654 | 0.956 | 0.639 | 0.906 | 0.540 | 0.921 | 0.645 | 0.945 | 0.627 |
Guangzhou | 0.960 | 0.621 | 0.957 | 0.612 | 0.931 | 0.622 | 0.929 | 0.634 | 0.915 | 0.633 | 0.903 | 0.617 | 0.933 | 0.623 |
Xi’an | 0.991 | 0.762 | 0.991 | 0.773 | 0.987 | 0.727 | 0.985 | 0.711 | 0.971 | 0.633 | 0.967 | 0.646 | 0.982 | 0.709 |
Wuhan | 0.978 | 0.593 | 0.978 | 0.620 | 0.971 | 0.595 | 0.966 | 0.575 | 0.947 | 0.549 | 0.930 | 0.484 | 0.962 | 0.569 |
Nanjing | 0.970 | 0.581 | 0.963 | 0.568 | 0.954 | 0.570 | 0.940 | 0.513 | 0.918 | 0.545 | 0.923 | 0.678 | 0.945 | 0.576 |
Chengdu | 0.987 | 0.552 | 0.984 | 0.552 | 0.978 | 0.596 | 0.971 | 0.587 | 0.955 | 0.559 | 0.946 | 0.595 | 0.970 | 0.574 |
Zhengzhou | 0.981 | 0.661 | 0.979 | 0.658 | 0.969 | 0.672 | 0.963 | 0.647 | 0.948 | 0.616 | 0.931 | 0.618 | 0.962 | 0.645 |
Urumqi | 0.991 | 0.616 | 0.988 | 0.581 | 0.988 | 0.599 | 0.989 | 0.689 | 0.983 | 0.680 | 0.981 | 0.727 | 0.987 | 0.649 |
Changchun | 0.991 | 0.552 | 0.992 | 0.588 | 0.991 | 0.619 | 0.985 | 0.623 | 0.983 | 0.663 | 0.985 | 0.767 | 0.988 | 0.636 |
Qingdao | 0.981 | 0.644 | 0.978 | 0.636 | 0.969 | 0.616 | 0.968 | 0.618 | 0.959 | 0.608 | 0.957 | 0.679 | 0.969 | 0.634 |
Datong | 0.994 | 0.646 | 0.993 | 0.622 | 0.993 | 0.681 | 0.989 | 0.630 | 0.976 | 0.493 | 0.977 | 0.613 | 0.987 | 0.614 |
Taiyuan | 0.985 | 0.736 | 0.984 | 0.731 | 0.982 | 0.720 | 0.981 | 0.719 | 0.977 | 0.697 | 0.972 | 0.710 | 0.980 | 0.719 |
Bengbu | 0.994 | 0.576 | 0.993 | 0.521 | 0.993 | 0.591 | 0.986 | 0.480 | 0.972 | 0.467 | 0.970 | 0.487 | 0.985 | 0.520 |
Shangqiu | 0.992 | 0.345 | 0.990 | 0.365 | 0.988 | 0.407 | 0.988 | 0.562 | 0.977 | 0.592 | 0.980 | 0.707 | 0.986 | 0.496 |
Yingkou | 0.987 | 0.580 | 0.986 | 0.585 | 0.982 | 0.519 | 0.977 | 0.519 | 0.964 | 0.440 | 0.965 | 0.573 | 0.977 | 0.536 |
Liaocheng | 0.991 | 0.471 | 0.989 | 0.457 | 0.984 | 0.535 | 0.985 | 0.677 | 0.966 | 0.590 | 0.968 | 0.692 | 0.980 | 0.570 |
Sanya | 0.990 | 0.495 | 0.989 | 0.531 | 0.978 | 0.377 | 0.965 | 0.368 | 0.946 | 0.384 | 0.940 | 0.460 | 0.968 | 0.436 |
Average | 0.982 | 0.606 | 0.980 | 0.603 | 0.973 | 0.604 | 0.968 | 0.608 | 0.952 | 0.577 | 0.948 | 0.633 | 0.967 | 0.605 |
City Scale | City | Population Size | Economic Location | Type of Urban Expansion |
---|---|---|---|---|
Supercity | Beijing | Higher than 10 million | Eastern | A |
Shanghai | Eastern | B | ||
Tianjin | Eastern | A | ||
Megacity | Guangzhou | Higher than 5 million less than 10 million | Eastern | B |
Wuhan | Central | A | ||
Chengdu | Western | A | ||
Xi’an | Western | A | ||
Nanjing | Eastern | A | ||
Large city | Zhengzhou | Higher than 1 million less than 5 million | Central | B |
Changchun | Northeastern | B | ||
Urumqi | Western | B | ||
Qingdao | Eastern | B | ||
Taiyuan | Central | B | ||
Datong | Central | B | ||
Liaocheng | Eastern | A | ||
Medium-sized city | Bengbu | Higher than 500 thousand less than 1 million | Central | B |
Yingkou | Northeastern | B | ||
Shangqiu | Central | A | ||
Small city | Sanya | Less than 500 thousand | Eastern | B |
Residential Type | Urban | Suburban | Rural | Non-Residential |
---|---|---|---|---|
Beijing | 0.285 | 0.271 | 0.436 | 0.008 |
Shanghai | 0.211 | 0.263 | 0.475 | 0.051 |
Tianjin | 0.217 | 0.265 | 0.496 | 0.023 |
Guangzhou | 0.259 | 0.264 | 0.456 | 0.021 |
Xi’an | 0.270 | 0.224 | 0.506 | 0.000 |
Wuhan | 0.198 | 0.238 | 0.528 | 0.036 |
Nanjing | 0.195 | 0.244 | 0.536 | 0.026 |
Chengdu | 0.077 | 0.088 | 0.554 | 0.281 |
Zhengzhou | 0.180 | 0.143 | 0.556 | 0.121 |
Urumqi | 0.183 | 0.211 | 0.504 | 0.103 |
Changchun | 0.182 | 0.196 | 0.599 | 0.023 |
Qingdao | 0.166 | 0.187 | 0.567 | 0.080 |
Datong | 0.176 | 0.120 | 0.547 | 0.157 |
Taiyuan | 0.435 | 0.223 | 0.342 | 0.000 |
Bengbu | 0.108 | 0.142 | 0.636 | 0.114 |
Shangqiu | 0.052 | 0.085 | 0.602 | 0.262 |
Yingkou | 0.250 | 0.167 | 0.429 | 0.154 |
Liaocheng | 0.027 | 0.044 | 0.871 | 0.059 |
Sanya | 0.073 | 0.098 | 0.605 | 0.224 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yang, J.; Chen, M.; Wu, C.; Ren, H.; Liu, Y. An Approach for Retrieving Consistent Time Series “Urban Core–Suburban-Rural” (USR) Structure Using Nighttime Light Data from DMSP/OLS and NPP/VIIRS. Remote Sens. 2022, 14, 3642. https://doi.org/10.3390/rs14153642
Huang Y, Yang J, Chen M, Wu C, Ren H, Liu Y. An Approach for Retrieving Consistent Time Series “Urban Core–Suburban-Rural” (USR) Structure Using Nighttime Light Data from DMSP/OLS and NPP/VIIRS. Remote Sensing. 2022; 14(15):3642. https://doi.org/10.3390/rs14153642
Chicago/Turabian StyleHuang, Yaohuan, Jie Yang, Mingxing Chen, Chengbin Wu, Hongyan Ren, and Yesen Liu. 2022. "An Approach for Retrieving Consistent Time Series “Urban Core–Suburban-Rural” (USR) Structure Using Nighttime Light Data from DMSP/OLS and NPP/VIIRS" Remote Sensing 14, no. 15: 3642. https://doi.org/10.3390/rs14153642
APA StyleHuang, Y., Yang, J., Chen, M., Wu, C., Ren, H., & Liu, Y. (2022). An Approach for Retrieving Consistent Time Series “Urban Core–Suburban-Rural” (USR) Structure Using Nighttime Light Data from DMSP/OLS and NPP/VIIRS. Remote Sensing, 14(15), 3642. https://doi.org/10.3390/rs14153642