On Characteristics and Mixing Effects of Internal Solitary Waves in the Northern Yellow Sea as Revealed by Satellite and In Situ Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mooring Observation
2.2. VMP Observations
2.3. SAR Images
2.4. The KdV Equation
3. Results
3.1. Temperature Variations
3.2. Spectral Estimates
3.3. Close View of the ISWs
4. Discussion
4.1. Statistics of ISWs
4.2. Generation Sites of ISWs
4.3. Influences of ISWs on Internal Turbulence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helfrich, K.R.; Melville, W.K. Long nonlinear internal waves. Annu. Rev. Fluid Mech. 2006, 38, 395–425. [Google Scholar] [CrossRef]
- Jackson, C. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Atmos. 2007, 112, C11012. [Google Scholar] [CrossRef] [Green Version]
- Duda, T.F.; Lynch, J.F.; Irish, J.D.; Beardsley, R.C.; Ramp, S.R.; Chiu, C.S.; Tang, T.Y.; Yang, Y.J. Internal tide and nonlinear internal wave behavior at the continental slope in the northern south China Sea. IEEE J. Ocean. Eng. 2005, 29, 1105–1130. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lozovatsky, I.; Jang, S.T.; Chan, J.J.; Fernando, H. Episodes of nonlinear internal wave in the northern East China Sea. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, W.; Chen, H.; Meng, Z.; Shi, X.; Tian, J. Asymmetry of internal waves and its effects on the ecological environment observed in the northern South China Sea. Deep-Sea Res. Part I 2015, 98, 94–101. [Google Scholar] [CrossRef]
- Maxworthy, T. A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res. Oceans 1979, 84, 338–346. [Google Scholar] [CrossRef]
- Holloway, P.E. Internal hydraulic jumps and solitons at a shelf break region on the Australian North West Shelf. J. Geophys. Res. Atmos. 1987, 92, 5405–5416. [Google Scholar] [CrossRef]
- Sandstrom, H.; Elliot, J.A.; Cchrane, N.A. Observing groups of solitary internal waves and turbulence with BATFISH and echo-sounder. J. Phys. Oceanogr. 1989, 19, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Melville, W.K.; Helfrich, K.R. Transcritical two-layer flow over topography. J. Fluid Mech. 1987, 178, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, I.; Romanenkov, D.; Zimin, A.; Chapron, B. SAR observing large-scale nonlinear internal waves in the White Sea. Remote Sens. Environ. 2014, 147, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Pawlowicz, R.; Wang, C. Seasonal variability and generation mechanisms of nonlinear internal waves in the strait of Georgia. J. Geophys. Res. Oceans 2018, 123, 5706–5726. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, H.; Lozovatsky, I.D.; Fernando, H.J.S. Late summer stratification, internal waves, and turbulence in the Yellow Sea. J. Mar. Syst. 2009, 77, 459–472. [Google Scholar] [CrossRef]
- Bourgault, D.; Janes, D.C.; Galbraith, P.S. Observations of a large-amplitude internal wave train and its reflection off a steep slope. J. Phys. Oceanogr. 2011, 41, 586–600. [Google Scholar] [CrossRef]
- Moum, J.N.; Farmer, D.M.; Smyth, W.D.; Armi, L.; Vagle, S. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr. 2003, 33, 2093–2112. [Google Scholar] [CrossRef]
- Scotti, A.; Pineda, J. Obervation of very large and steep waves of elevation near the Massachusetts coast. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Hsu, M.; Liu, A.K.; Liu, C. A study of internal waves in the China Seas and Yellow Sea using SAR. Cont. Shelf Res. 2000, 20, 389–410. [Google Scholar] [CrossRef]
- Alpers, W.; He, M.X.; Zeng, K.; Guo, L.F.; Li, X.M. The distribution of internal waves in the East China Sea and the Yellow Sea studied by multi-sensor satellite images. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Seoul, Korea, 29 July 2005. [Google Scholar] [CrossRef]
- Xu, P.; Yang, W.; Zhu, B.; Wei, H.; Zhao, L.; Nie, H. Turbulent mixing and vertical nitrate flux induced by the semidiurnal internal tides in the southern Yellow Sea. Cont. Shelf Res. 2020, 208, 104240. [Google Scholar] [CrossRef]
- Yang, W.; Wei, H.; Liu, Z.; Li, G. Intermittent intense thermocline shear associated with wind-forced near-inertial internal waves in a summer stratified temperate shelf sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017576. [Google Scholar] [CrossRef]
- Kim, H.; Son, Y.B.; Jeong, J.; Jo, Y. Comparison of internal waves in various ocean fields around the Korean Peninsula. J. Coast. Res. 2018, 85, 466–470. [Google Scholar] [CrossRef]
- Liu, K.; Sun, J.; Guo, C.; Yang, Y.; Yu, W.; Wei, Z. Seasonal and spatial variations of the M2 internal tide in the Yellow Sea. J. Geophys. Res. Oceans 2019, 124, 1115–1138. [Google Scholar] [CrossRef]
- Lin, F.; Asplin, L.; Wei, H. Summertime M2 internal tides in the Northern Yellow Sea. Front. Mar. Sci. 2021, 8, 798504. [Google Scholar] [CrossRef]
- Lien, C.R. Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett. 2005, 32, 215–236. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, J.M.; Lerczak, J.A.; Barth, J.A.; Becherer, J.; Colosi, J.A.; MacKinnon, J.A.; MacMahan, J.H.; Moum, J.N.; Pierce, S.D.; Waterhouse, A.F. Observations of shoaling nonlinear internal bores across the Central California inner shelf. J. Phys. Oceanogr. 2020, 50, 111–132. [Google Scholar] [CrossRef]
- Lai, Z.; Jin, G.; Huang, Y.; Chen, H.; Shang, X.; Xiong, X. The generation of nonlinear internal waves in the South China Sea: A three-dimensional, nonhydrostatic numerical study. J. Geophys. Res. Oceans 2019, 124, 8949–8968. [Google Scholar] [CrossRef]
- Bai, X.; Liu, Z.; Zheng, Q.; Hu, J.; Lamb, K.G.; Cai, S. Fission of shoaling internal waves on the Northeastern Shelf of the South China Sea. J. Geophys. Res. Oceans 2019, 124, 4529–4545. [Google Scholar] [CrossRef]
- Pinkel, R. Observations of the near-surface internal wavefield. J. Phys. Oceanogr. 1981, 11, 1248–1257. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wei, H.; Zhao, L.; Zhang, J. Turbulence and vertical nitrate flux adjacent to the Changjiang Estuary during fall. J. Mar. Syst. 2020, 212, 103427. [Google Scholar] [CrossRef]
- Valenzuela, G.R. Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Lay. Meteorol. 1978, 13, 61–85. [Google Scholar] [CrossRef]
- Alpers, W. Theory of radar imaging of internal waves. Nature 1985, 314, 245–247. [Google Scholar] [CrossRef]
- Chang, M.H.; Lien, R.C.; Yang, Y.J.; Tang, T.Y.; Wang, J. A composite view of surface signatures and interior properties of nonlinear internal waves: Observations and applications. J. Atmos. Ocean. Technol. 2008, 25, 523–531. [Google Scholar] [CrossRef]
- Fu, L.L.; Holt, B. Internal waves in the Gulf of California—Observations from a spaceborne radar. J. Geophys. Res. Oceans 1984, 89, 2053. [Google Scholar] [CrossRef]
- Liu, A.K.; Chang, Y.S.; Hsu, M.K.; Liang, N.K. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res. Oceans 1998, 103, 7995–8008. [Google Scholar] [CrossRef]
- Zhao, Z. Satellite observation of internal solitary waves converting polarity. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Grimshaw, R.; Pelinovsky, E.; Talipova, T. Modelling internal solitary waves in the Coastal Ocean. Surv. Geophys. 2007, 28, 273–298. [Google Scholar] [CrossRef]
- Djidjeli, K.; Price, W.G.; Twizell, E.H.; Wang, Y. Numerical methods for the solution of the third- and fifth-order dispersive Korteweg-de Vries equations. J. Comput. Appl. Math. 1995, 58, 307–336. [Google Scholar] [CrossRef] [Green Version]
- Segur, H.; Hammack, J.L. Soliton models of long internal waves. J. Fluid Mech. 1982, 118, 285–304. [Google Scholar] [CrossRef]
- Koop, C.G.; Butler, G. An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 1981, 112, 225–251. [Google Scholar] [CrossRef]
- Apel, J.R.; Ostrovsky, L.A.; Stepanyants, Y.A.; Lynch, J.F. Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 2007, 121, 695–722. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Zhao, Z.; Li, X. Internal solitary wave propagation observed by tandem satellites. Geophys. Res. Lett. 2014, 41, 2077–2085. [Google Scholar] [CrossRef]
- Shen, H.; Perrie, W.; Johnson, C.L. Predicting internal solitary waves in the gulf of maine. J. Geophys. Res. Oceans 2020, 125, e2019JC015941. [Google Scholar] [CrossRef] [Green Version]
- Colosi, J.A.; Kumar, N.; Suanda, S.H.; Freismuth, T.M.; MacMahan, J.H. Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J. Phys. Oceanogr. 2018, 48, 123–143. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, T.J.; Vlasenko, V.I.; Stashchuk, N.; Jeans, D.R.G.; Jones, B. Along-slope generation as an explanation for some unusually large internal tides. Deep-Sea Res. Part I: Oceanogr. Res. Pap. 2002, 49, 1787–1799. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Han, Z.; Xu, L. Internal solitary waves in the East China Sea. Acta Oceanol. Sin. 2008, 27, 51–59. [Google Scholar] [CrossRef]
- Bai, X.; Liu, Z.; Li, X.; Hu, J. Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations. Int. J. Remote Sens. 2014, 35, 4086–4098. [Google Scholar] [CrossRef]
- Lozovatsky, I.; Liu, Z.; Fernando, H.; Armengol, J.; Roget, E. Shallow water tidal currents in close proximity to the seafloor and boundary-induced turbulence. Ocean Dyn. 2012, 62, 177–191. [Google Scholar] [CrossRef]
- Da Silva, J.C.B.; Buijsman, M.C.; Magalhaes, J.M. Internal waves on the upstream side of a large sill of the Mascarene Ridge: A comprehensive view of their generation mechanisms and evolution. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 99, 87–104. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhang, J.; Meng, J. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS. Acta Oceanol. Sin. 2019, 38, 121–128. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhang, T. Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images. J. Oceanol. Limnol. 2020, 38, 1435–1444. [Google Scholar] [CrossRef]
- Rippeth, T.P.; Palmer, M.R.; Simpson, J.H.; Fisher, N.R.; Sharples, J. Thermocline mixing in summer stratified continental shelf sea. Geophys. Res. Lett. 2005, 32, 159–171. [Google Scholar] [CrossRef]
- Sharples, J.; Moore, M.C.; Hickman, A.E.; Holligan, P.M.; Simpson, J.H. Internal tidal mixing as a control on continental margin ecosystems. Geophys. Res. Lett. 2009, 36, L23603. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xie, J.; Xu, J.; Zhan, J.; Cai, S. Energetics of nonlinear internal waves generated by tidal flow over topography. Ocean Model. 2013, 68, 1–8. [Google Scholar] [CrossRef]
- Kay, D.J. Interfacial mixing in a highly stratified estuary 1. Characteristics of mixing. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.; Sharples, J.; Mahaffey, C.; Rippeth, T. Wind-driven nutrient pulses to the subsurface chlorophyll maximum in seasonally stratified shelf seas. Geophys. Res. Lett. 2013, 40, 5467–5472. [Google Scholar] [CrossRef] [Green Version]
- Shroyer, E.L.; Benoit-Bird, K.J.; Nash, J.D.; Moum, J.N. Stratification and mixing regimes in biological thin layers over the Mid-Atlantic Bight. Limnol. Oceanogr. 2014, 59, 1349–1363. [Google Scholar] [CrossRef] [Green Version]
- Sharples, J.; Zeldis, J.R. Variability of internal tide energy, mixing and nitrate fluxes in response to changes in stratification on the northeast New Zealand continental shelf. N. Z. J. Mar. Freshw. 2019, 55, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, J.; Lin, F.; Ren, J.S.; Sun, K.; Liu, Y.; Wu, W.; Wang, W. An ecosystem model for estimating shellfish production carrying capacity in bottom culture systems. Ecol. Model. 2019, 393, 1–11. [Google Scholar] [CrossRef]
- Nan, X.; Wei, H.; Zhang, H.; Nie, H. Factors influencing the interannual variation in biomass of bottom-cultured yesso scallop (Patinopecten yessoensis) in the Changhai Sea Area, China. Front. Mar. Sci. 2022, 8, 798359. [Google Scholar] [CrossRef]
Stations | Depth (m) | Sensors | Sampling Period (s) | Sensor Height (m) |
---|---|---|---|---|
A4 | 39 | T | 1 | 1.5 |
T | 1 | 9 | ||
T | 1 | 17 | ||
T | 1 | 24.5 | ||
B4 | 38.8 | CTD | 300 | 1.5 |
TD | 10 | 8 | ||
T | 10 | 14 | ||
T | 10 | 18 | ||
CTD | 10 | 21 | ||
TD | 10 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yang, W.; Wei, H.; Jiang, C.; Liu, C.; Zhao, L. On Characteristics and Mixing Effects of Internal Solitary Waves in the Northern Yellow Sea as Revealed by Satellite and In Situ Observations. Remote Sens. 2022, 14, 3660. https://doi.org/10.3390/rs14153660
Liu H, Yang W, Wei H, Jiang C, Liu C, Zhao L. On Characteristics and Mixing Effects of Internal Solitary Waves in the Northern Yellow Sea as Revealed by Satellite and In Situ Observations. Remote Sensing. 2022; 14(15):3660. https://doi.org/10.3390/rs14153660
Chicago/Turabian StyleLiu, Heping, Wei Yang, Hao Wei, Chengfei Jiang, Changgen Liu, and Liang Zhao. 2022. "On Characteristics and Mixing Effects of Internal Solitary Waves in the Northern Yellow Sea as Revealed by Satellite and In Situ Observations" Remote Sensing 14, no. 15: 3660. https://doi.org/10.3390/rs14153660
APA StyleLiu, H., Yang, W., Wei, H., Jiang, C., Liu, C., & Zhao, L. (2022). On Characteristics and Mixing Effects of Internal Solitary Waves in the Northern Yellow Sea as Revealed by Satellite and In Situ Observations. Remote Sensing, 14(15), 3660. https://doi.org/10.3390/rs14153660