Intercomparison of Aerosol Types Reported as Part of Aerosol Product Retrieval over Diverse Geographic Regions
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Areas
2.2. CALIOP/CALIPSO Aerosol Products
2.3. MODIS MAIAC Aerosol Products
2.4. MODIS Deep Blue Aerosol Products
2.5. OMI Products
2.6. AERONET Data
3. Methodology
3.1. Performance of Retrieved Aerosol Products
3.2. Aerosol Type Classification
4. Results
4.1. Performance of CALIOP AOD Retrievals
4.2. Aerosol-Type Impact on AOD Retrievals
4.3. Aerosol Type Classification
4.3.1. CALIOP and MAIAC Aerosol Types
4.3.2. MAIAC and OMI-DB Aerosol Types
4.3.3. CALIOP and OMI-DB Aerosol Types
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Leung, L.R.; Rosenfeld, D.; DeMott, P.J. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds. Atmos. Chem. Phys. 2017, 17, 1017–1035. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Aerosols, their Direct and Indirect Effects. IPCC TAR 5, 2018. Chap. 5, Coordinating Lead Author J.E. Penner. Available online: https://www.ipcc.ch/report/ar3/wg1/chapter-5-aerosols-their-direct-and-indirect-effects/ (accessed on 10 May 2020).
- Burrows, S.M.; McCluskey, C.S.; Cornwell, G.; Steinke, I.; Zhang, K.; Zhao, B.; Zawadowicz, M.; Raman, A.; Kulkarni, G.; China, S.; et al. Ice-Nucleating Particles That Impact Clouds and Climate: Observational and Modeling Research Needs. Rev. Geophys. 2022, 60, e2021RG000745. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, R.R. (Eds.) Climate Change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ostro, B.; Feng, W.Y.; Broadwin, R.; Green, S.; Lipsett, M. The effects of components of fine particulate air pollution on mortality in California: Results from CALFINE. Environ. Health Perspect. 2007, 115, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudie, A.S.; Middleton, N.J. Dust storms in southwest Asia. Acta Univ. Carol. Geogr. XXXV Suppl. 2000, 73–83. [Google Scholar]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Bilal, M.; Lyapustin, A.I.; Chatfield, R.; Broday, D.M. Estimation of high-resolution PM2.5 over the Indo-Gangetic plain by fusion of satellite data, meteorology, and land use variables. Environ. Sci. Technol. 2020, 54, 7891–7900. [Google Scholar] [CrossRef]
- Falah, S.; Mhawish, A.; Sorek-Hamer, M.; Lyapustin, A.I.; Kloog, I.; Banerjee, T.; Kizel, F.; Broday, D.M. Impact of environmental attributes on the uncertainty in MAIAC/MODIS AOD retrievals: A comparative analysis. Atmos. Environ. 2021, 262, 118659. [Google Scholar] [CrossRef]
- Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K. The atmospheric aerosol system: An overview. Rev. Geophys. 1983, 21, 1607–1629. [Google Scholar] [CrossRef]
- Martin, R.V.; Jacob, D.J.; Yantosca, R.M.; Chin, M.; Ginoux, P. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. Atmos. 2003, 108, 4097. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Forchhammer, L.; Møller, P.; Simonsen, J.; Glasius, M.; Wåhlin, P.; Raaschou-nielsen, O.; Loft, S. Exposure to ultrafine particles from ambient air and oxidative stress–induced DNA damage. Environ. Health Perspect. 2007, 115, 1177–1182. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Hoek, G.; Simic-lawson, M.; Fischer, P.; Bree, L.; van Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, R.; Brunekreef, B.; et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grahame, T.J.; Klemm, R.; Schlesinger, R.B. Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manag. Assoc. 2014, 64, 620–660. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, S.E.; Winquist, A.; Schauer, J.J.; Turner, J.R.; Sarnat, J.A. Fine particulate matter components and emergency department visits for cardiovascular and respiratory diseases in the St. Louis, Missouri–Illinois, metropolitan area. Environ. Health Perspect. 2015, 123, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krall, J.R.; Strickland, M.J. Recent approaches to estimate associations between source-specific air pollution and health. Curr. Environ. Health Rep. 2017, 4, 68–78. [Google Scholar] [CrossRef]
- de Prado Bert, P.; Mercader, E.M.H.; Pujol, J.; Sunyer, J.; Mortamais, M. The effects of air pollution on the brain: A review of studies interfacing environmental epidemiology and neuroimaging. Curr. Environ. Health Rep. 2018, 5, 351–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Ambient Air Pollution: Health Impacts. 2018. Available online: https://www.who.int/airpollution/ambient/health-impacts/en/ (accessed on 10 May 2020).
- Maghrabi, A.; Alharbi, B.; Tapper, N. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos. Environ. 2011, 45, 2164–2173. [Google Scholar] [CrossRef]
- Al-Salihi, A.M. Characterization of aerosol type based on aerosol optical properties over Baghdad, Iraq. Arab. J. Geosci. 2018, 11, 633. [Google Scholar] [CrossRef]
- Diner, D.J.; Boland, S.W.; Brauer, M.; Bruegge, C.; Burke, K.A.; Chipman, R.; Di Girolamo, L.; Garay, M.J.; Hasheminassab, S.; Hyer, E.; et al. Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: From MISR to MAIA. J. Appl. Remote Sens. 2018, 12, 042603. [Google Scholar] [CrossRef] [Green Version]
- Molina, C.; Toro, R.A.; Manzano, C.A.; Canepari, S.; Massimi, L.; Leiva-Guzmán, M.A. Airborne aerosols and human health: Leapfrogging from mass concentration to oxidative potential. Atmosphere 2020, 11, 917. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos. 2012, 117, D17203. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, A.; Bahadur, R.; Suski, K.J.; Cahill, J.F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K.A. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys. 2013, 13, 9337–9350. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.G.; Kambezidis, H.D.; Nastos, P.T.; Kosmopoulos, P.G. Study on an intense dust storm over Greece. Atmos. Environ. 2008, 42, 6884–6896. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, J.H.; Diner, D.J.; Su, H.; Gu, Y.; Liou, K.N.; Jiang, Z.; Huang, L.; Takano, Y.; Fan, X.; et al. Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets. Atmos. Chem. Phys. 2018, 18, 11247–11260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalapureddy, M.C.R.; Kaskaoutis, D.G.; Raj, E.P.; Devara, P.C.S.; Kambezidis, H.D.; Kosmopoulos, P.G.; Nastos, P.T. Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB). J. Geophys. Res. Atmos. 2009, 114, D17203. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Remer, L.A.; Kaufman, Y.J.; Holben, B.N.; Thompson, A.M.; McNamara, D. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. Atmos. 1998, 103, 31879–31891. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chin, M.; Remer, L.A.; Kleidman, R.G.; Bellouin, N.; Bian, H.; Diehl, T. Variability of marine aerosol fine-mode fraction and estimates of anthropogenic aerosol component over cloud-free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Atmos. 2009, 114, D10206. [Google Scholar] [CrossRef] [Green Version]
- Sorek-Hamer, M.; Cohen, A.; Levy, R.C.; Ziv, B.; Broday, D.M. Classification of dust days over Israel using satellite remotely sensed aerosol products. Int. J. Remote Sens. 2013, 34, 2672–2688. [Google Scholar] [CrossRef]
- Levy, R.C.; Kleidman, R.G.; Eck, T.F. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar]
- Levelt, P.F.; Van den Oord, G.H.; Dobber, M.R.; Malkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Mhawish, A.; Sorek-Hamer, M.; Chatfield, R.; Banerjee, T.; Bilal, M.; Kumar, M.; Sarangi, C.; Franklin, M.; Chau, K.; Garay, M.; et al. Aerosol characteristics from earth observation systems: A comprehensive investigation over South Asia (2000–2019). Remote Sens. Environ. 2021, 259, 112410. [Google Scholar] [CrossRef]
- Whittaker, R.; Dias, J.G.; Ramliden, M.; Ködmön, C.; Economopoulou, A.; Beer, N.; Celentano, L.P.; Kanitz, E.; Richter, L.; Mattheus, W.; et al. The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004–2014. Vaccine 2017, 35, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Hunt, W.H.; Winker, D.M.; Vaughan, M.A.; Powell, K.A.; Lucker, P.L.; Weimer, C. CALIPSO lidar description and performance assessment. J. Atmos. Ocean. Technol. 2009, 26, 1214–1228. [Google Scholar] [CrossRef]
- Liu, Z.; Vaughan, M.; Winker, D.; Kittaka, C.; Getzewich, B.; Kuehn, R.; Omar, A.; Powell, K.; Trepte, C.; Hostetler, C. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Ocean. Technol. 2009, 26, 1198–1213. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, S.A.; Vaughan, M.A.; Kuehn, R.E.; Winker, D.M. The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data: Uncertainty and error sensitivity analyses. J. Atmos. Ocean. Technol. 2013, 30, 395–428. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J.; Meister, G. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. J. Geophys. Res. Atmos. 2015, 120, 12–157. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Chen, L.; Wang, Z.; Wang, J.; Che, H.; Xu, X.; Wang, W.; Tao, J.; Zhu, H.; Hou, C. Evaluation of MODIS Deep Blue aerosol algorithm in desert region of East Asia: Ground validation and intercomparison. J. Geophys. Res. Atmos. 2017, 122, 10357–10368. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- De Graaf, M.; Stammes, P.; Torres, O.; Koelemeijer, R.B.A. Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS. J. Geophys. Res. Atmos. 2005, 110, D1. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112, D24. [Google Scholar] [CrossRef] [Green Version]
- Buchard, V.; Da Silva, A.M.; Colarco, P.R.; Darmenov, A.; Randles, C.A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys. 2015, 15, 5743–5760. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kang, S.; Cong, Z.; Schmale, J.; Sprenger, M.; Li, C.; Yang, W.; Gao, T.; Sillanpää, M.; Li, X.; et al. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 6915–6933. [Google Scholar] [CrossRef]
- Jethva, H.T.; Chand, D.; Torres, O.; Gupta, P.; Lyapustin, A.; Patadia, F. Agricultural burning and air quality over northern India: A synergistic analysis using NASA’s A-train satellite data and ground measurements. Aerosol Air Qual. Res. 2018, 18, 1756–1773. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, Z.; Zhang, R. Model study of atmospheric particulates during dust storm period in March 2010 over East Asia. Atmos. Environ. 2011, 45, 3954–3964. [Google Scholar] [CrossRef]
- Penning de Vries, M.J.M.; Beirle, S.; Hörmann, C.; Kaiser, J.W.; Stammes, P.; Tilstra, L.G.; Wagner, T. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances. Atmos. Chem. Phys. 2015, 15, 10597–10618. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Sorek-Hamer, M.; Strawa, A.W.; Chatfield, R.B.; Esswein, R.; Cohen, A.; Broday, D.M. Improved retrieval of PM2.5 from satellite data products using non-linear methods. Environ. Pollut. 2013, 182, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Sorek-Hamer, M.; Kloog, I.; Koutrakis, P.; Strawa, A.W.; Chatfield, R.; Cohen, A.; Ridgway, W.L.; Broday, D.M. Assessment of PM2.5 concentrations over bright surfaces using MODIS satellite observations. Remote Sens. Environ. 2015, 163, 180–185. [Google Scholar] [CrossRef]
- Redemann, J.; Vaughan, M.A.; Zhang, Q.; Shinozuka, Y.; Russell, P.B.; Livingston, J.M.; Kacenelenbogen, M.; Remer, L.A. The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth. Atmos. Chem. Phys. 2012, 12, 3025–3043. [Google Scholar]
- Rogozovsky, I.; Ansmann, A.; Althausen, D.; Heese, B.; Engelmann, R.; Hofer, J.; Baars, H.; Schechner, Y.; Lyapustin, A.; Chudnovsky, A. Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements. Atmos. Environ. 2021, 247, 118163. [Google Scholar] [CrossRef]
- Yu, F.; Luo, G.; Bates, T.; Anderson, B.; Clarke, A.; Kapustin, V.; Yantosca, R.; Wang, Y.; Wu, S. Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms. J. Geophys. Res. 2010, 115, D17205. [Google Scholar] [CrossRef]
- Ford, B.; Heald, C.L. An A-train and model perspective on the vertical distribution of aerosols and CO in the Northern Hemisphere. J. Geophys. Res. Atmos. 2012, 117, D016977. [Google Scholar] [CrossRef]
- Koffi, B.; Schulz, M.; Breon, F.M.; Griesfeller, J.; Winker, D.M.M.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Chin, M.; Collins, W.D.; et al. Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: Part 1. AeroCom phase I results. J. Geophys. Res. 2012, 117, D10201. [Google Scholar] [CrossRef] [Green Version]
- Koffi, B.; Schulz, M.; Breon, F.M.; Dentener, F.; Steensen, B.M.; Griesfeller, J.; Winker, D.; Balkanski, Y.; Bauer, S.E.; Bellouin, N.; et al. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. J. Geophys. Res. Atmos. 2016, 121, 7254–7283. [Google Scholar] [CrossRef] [Green Version]
- Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J.J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; et al. A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products. Atmos. Meas. Tech. 2013, 6, 1287–1314. [Google Scholar] [CrossRef] [Green Version]
- Mona, L.; Amodeo, A.; D’Amico, G.; Giunta, A.; Madonna, F.; Pappalardo, G. Multi wavelength Raman lidar observations of the Eyjafjallajokull volcanic cloud over Potenza, southern Italy. Atmos. Chem. Phys. 2012, 12, 2229–2244. [Google Scholar] [CrossRef] [Green Version]
- Senghor, H.; Machu, E.; Hourdin, F.; Gaye, A.T. Seasonal cycle of desert aerosols in western Africa: Analysis of the coastal transition with passive and active sensors. Atmos. Chem. Phys. 2017, 17, 8395–8410. [Google Scholar] [CrossRef] [Green Version]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Tsikerdekis, A.; Solomos, S.; Proestakis, E.; Konsta, D.; Papagiannopoulos, N.; Tsekeri, A.; Vlastou, G.; et al. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, X.; Tao, J.; Huang, R.; Tian, P.; Cao, J.; Zhang, L.; Ho, K.F.; Han, Z.; Zhang, R. Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes. Atmos. Chem. Phys. 2017, 17, 7965–7975. [Google Scholar] [CrossRef] [Green Version]
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of atmospheric brown carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | AE (440–870 nm) | ||||||
---|---|---|---|---|---|---|---|
Mean | SD | Median | Min | Max | |||
CALIOP Aerosol Subtypes | |||||||
Dusty Marine | 0.22 | 37 | 1.02 | 0.45 | 1.08 | 0.13 | 1.92 |
Dust | 0.44 | 175 | 0.48 | 0.38 | 0.37 | 0.00 | 2.28 |
Polluted Continental/Smoke | 0.35 | 145 | 1.31 | 0.41 | 1.38 | 0.21 | 2.13 |
Polluted Dust | 0.46 | 155 | 1.07 | 0.45 | 1.12 | −0.03 | 2.13 |
Elevated Smoke | 0.61 | 8 | 1.19 | 0.56 | 1.22 | 0.13 | 1.75 |
MAIAC Aerosol Types | |||||||
Background | 0.28 | 377 | 1.05 | 0.49 | 1.10 | 0.05 | 2.13 |
Dust | 0.25 | 91 | 0.35 | 0.32 | 0.24 | −0.03 | 1.67 |
Smoke | 0.72 | 10 | 1.14 | 0.37 | 1.21 | 0.26 | 1.75 |
MAIAC | Background (B) | Dust (D) | Smoke (S) | |
---|---|---|---|---|
North Africa (N = 107) | ||||
CALIOP | Elevated Smoke (ES) | 0 | 1.87 | 0 |
Dust (DD) | 7.48 | 61.68 | 0 | |
Polluted Dust (PD) | 6.54 | 10.28 | 0 | |
Polluted Continental/Smoke (PC/S) | 2.80 | 3.74 | 0 | |
Dusty Marine (DM) | 0 | 5.61 | 0 | |
California (N = 28) | ||||
CALIOP | Elevated Smoke (ES) | 0 | 0 | 0 |
Dust (DD) | 17.86 | 0 | 0 | |
Polluted Dust (PD) | 28.57 | 0 | 0 | |
Polluted Continental/Smoke (PC/S) | 25.00 | 0 | 0 | |
Dusty Marine (DM) | 25.00 | 0 | 3.57 | |
Germany (N = 144) | ||||
CALIOP | Elevated Smoke (ES) | 2.08 | 0 | 0 |
Dust (DD) | 4.86 | 0 | 0.69 | |
Polluted Dust (PD) | 29.17 | 0 | 0 | |
Polluted Continental/Smoke (PC/S) | 52.78 | 0 | 0 | |
Dusty Marine (DM) | 10.42 | 0 | 0 | |
South Asia (N = 199) | ||||
CALIOP | Elevated Smoke (ES) | 0.50 | 0 | 0.50 |
Dust (DD) | 41.71 | 0.50 | 0 | |
Polluted Dust (PD) | 35.68 | 0.50 | 2.01 | |
Polluted Continental/Smoke (PC/S) | 16.58 | 0 | 1.51 | |
Dusty Marine (DM) | 0.50 | 0 | 0.50 | |
All (N = 478) | ||||
CALIOP | Elevated Smoke (ES) | 0.84 | 0.42 | 0.21 |
Dust (DD) | 21.55 | 14.02 | 0.21 | |
Polluted Dust (PD) | 26.78 | 2.51 | 0.63 | |
Polluted Continental/Smoke (PC/S) | 24.90 | 0.84 | 0.84 | |
Dusty Marine (DM) | 4.81 | 1.26 | 0.21 |
OMI-DB | AC | AF | AM | SC | SF | SM | NC | NF | NM | |
---|---|---|---|---|---|---|---|---|---|---|
North Africa (N = 9685) | ||||||||||
MAIAC | Smoke | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dust | 19.1 | 13.6 | 5.8 | 0 | 0 | 0 | 1.6 | 17.1 | 1.9 | |
Background | 8.3 | 9.2 | 2.6 | 0 | 1.0 | 0.1 | 2.3 | 13.3 | 2.4 | |
California (N = 6518) | ||||||||||
MAIAC | Smoke | 0.1 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dust | 0.1 | 2.0 | 0.2 | 0 | 0 | 0 | 0.3 | 2.5 | 0.3 | |
Background | 12.8 | 35.0 | 7.5 | 0.4 | 1.1 | 0.4 | 4.9 | 26.2 | 4.9 | |
Germany (N = 11,412) | ||||||||||
MAIAC | Smoke | 0.2 | 1.0 | 0.1 | 0 | 0 | 0 | 0 | 1.2 | 0.2 |
Dust | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | |
Background | 3.6 | 24.2 | 4.1 | 0.4 | 5.0 | 0.5 | 4.2 | 47.7 | 6.7 | |
South Asia (N = 12,316) | ||||||||||
MAIAC | Smoke | 3.1 | 13.2 | 3.7 | 0 | 0 | 0 | 0.4 | 1.0 | 0.5 |
Dust | 2.4 | 0.2 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | |
Background | 16.8 | 28.6 | 11.0 | 0.4 | 0.6 | 0.2 | 3.4 | 10.3 | 3.0 | |
All (N = 39,932) | ||||||||||
MAIAC | Smoke | 1.1 | 4.4 | 1.2 | 0 | 0 | 0 | 0.1 | 0.6 | 0.2 |
Dust | 5.4 | 3.7 | 1.5 | 0 | 0.1 | 0 | 0.4 | 4.5 | 0.5 | |
Background | 10.3 | 23.7 | 6.4 | 0.3 | 2.0 | 0.3 | 3.6 | 24.3 | 5.4 |
OMI-DB | Abs. Coarse (AC) | Abs. Fine (AF) | Abs. Mixed (AM) | Sca. Coarse (SC) | Sca. Fine (SF) | Sca. Mixed (SM) | Neu. Coarse (NC) | Neu. Fine (NF) | Neu. Mixed (NM) | |
---|---|---|---|---|---|---|---|---|---|---|
North Africa (N = 123) | ||||||||||
CALIOP | Elevated Smoke (ES) | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dust (DD) | 27.6 | 16.2 | 13.8 | 0 | 0 | 0 | 0.8 | 2.4 | 3.2 | |
Polluted Dust (PD) | 2.4 | 5.6 | 4.0 | 0 | 0 | 0 | 0 | 3.2 | 0 | |
Polluted Continental/Smoke (PC/S) | 0 | 4.0 | 1.6 | 0 | 0 | 0 | 0 | 3.2 | 2.4 | |
Dusty Marine (DM) | 0 | 0.8 | 0.8 | 0 | 0 | 0 | 0 | 4.8 | 1.6 | |
California (N = 69) | ||||||||||
CALIOP | Elevated Smoke (ES) | 1.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dust (DD) | 10.1 | 2.8 | 0 | 0 | 0 | 0 | 2.8 | 4.3 | 0 | |
Polluted Dust (PD) | 4.3 | 1.4 | 0 | 0 | 0 | 0 | 4.3 | 4.3 | 4.3 | |
Polluted Continental/Smoke (PC/S) | 0 | 7.2 | 2.8 | 0 | 0 | 0 | 0 | 7.2 | 0 | |
Dusty Marine (DM) | 4.3 | 10.1 | 5.7 | 0 | 0 | 0 | 4.3 | 11.5 | 4.3 | |
Germany (N = 214) | ||||||||||
CALIOP | Elevated Smoke (ES) | 0.9 | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 |
Dust (DD) | 3.7 | 0.9 | 0 | 0 | 0 | 0 | 0 | 3.7 | 0 | |
Polluted Dust (PD) | 0.9 | 7.4 | 2.8 | 0 | 1.8 | 0 | 0 | 14.0 | 0 | |
Polluted Continental/Smoke (PC/S) | 0 | 22.4 | 2.8 | 0 | 4.5 | 0 | 0 | 24.2 | 2.8 | |
Dusty Marine (DM) | 0 | 1.8 | 0 | 0 | 0 | 0 | 0 | 2.8 | 0 | |
South Asia (N = 121) | ||||||||||
CALIOP | Elevated Smoke (ES) | 0 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dust (DD) | 5.7 | 9.9 | 11.5 | 0 | 0 | 0 | 0.8 | 3.3 | 0.8 | |
Polluted Dust (PD) | 1.6 | 23.9 | 1.6 | 0 | 0 | 0 | 0.8 | 10.7 | 1.6 | |
Polluted Continental/Smoke (PC/S) | 1.6 | 17.3 | 4.1 | 0 | 0 | 0 | 0 | 0.8 | 0 | |
Dusty Marine (DM) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.6 | 0 | |
All (N = 527) | ||||||||||
CALIOP | Elevated Smoke (ES) | 0.7 | 0.1 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 |
Dust (DD) | 10.6 | 6.8 | 5.8 | 0 | 0 | 0 | 0.7 | 3.4 | 0.9 | |
Polluted Dust (PD) | 1.8 | 10.0 | 2.4 | 0 | 0.7 | 0 | 0.7 | 9.4 | 0.9 | |
Polluted Continental/Smoke (PC/S) | 0.3 | 14.9 | 2.8 | 0 | 2.0 | 0 | 0 | 11.7 | 1.7 | |
Dusty Marine (DM) | 0.5 | 2.2 | 0.9 | 0 | 0 | 0 | 0.5 | 4.1 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falah, S.; Mhawish, A.; Omar, A.H.; Sorek-Hamer, M.; Lyapustin, A.I.; Banerjee, T.; Kizel, F.; Broday, D.M. Intercomparison of Aerosol Types Reported as Part of Aerosol Product Retrieval over Diverse Geographic Regions. Remote Sens. 2022, 14, 3667. https://doi.org/10.3390/rs14153667
Falah S, Mhawish A, Omar AH, Sorek-Hamer M, Lyapustin AI, Banerjee T, Kizel F, Broday DM. Intercomparison of Aerosol Types Reported as Part of Aerosol Product Retrieval over Diverse Geographic Regions. Remote Sensing. 2022; 14(15):3667. https://doi.org/10.3390/rs14153667
Chicago/Turabian StyleFalah, Somaya, Alaa Mhawish, Ali H. Omar, Meytar Sorek-Hamer, Alexei I. Lyapustin, Tirthankar Banerjee, Fadi Kizel, and David M. Broday. 2022. "Intercomparison of Aerosol Types Reported as Part of Aerosol Product Retrieval over Diverse Geographic Regions" Remote Sensing 14, no. 15: 3667. https://doi.org/10.3390/rs14153667
APA StyleFalah, S., Mhawish, A., Omar, A. H., Sorek-Hamer, M., Lyapustin, A. I., Banerjee, T., Kizel, F., & Broday, D. M. (2022). Intercomparison of Aerosol Types Reported as Part of Aerosol Product Retrieval over Diverse Geographic Regions. Remote Sensing, 14(15), 3667. https://doi.org/10.3390/rs14153667