Micro-Doppler Curves Extraction of Space Target Based on Modified Synchro-Reassigning Transform and Ridge Segment Linking
Abstract
:1. Introduction
- This paper proposes the MSRT. We deduce the objective function of the MSRT, establish a two-step rearrangement rule to approximate the second-order local instantaneous frequency of the signal, and solve the problem that the SRT cannot be applied to strong time-varying signals.
- We propose a novel ridge segment linking strategy. We make full use of the relationship between the components and the ridge information of the intersecting interval to realize the practical and robust association of the ridges of each component and solve the modal mismatch problem of the extracted ridges.
2. Radar Echo Model of Space Target
3. The Proposed MSRT
3.1. The Basic Theory of the SRT
3.2. MSRT
3.3. Implementation of the MSRT
Algorithm 1 Fast calculation of the discrete MSRT. |
Input: Output:
|
4. Ridge Segment Linking and Mode Reconstruction
4.1. Ridge Detection
4.2. Ridge Segment Linking
4.3. Mode Reconstruction
5. Simulation and Verification
5.1. Detection Process and Parameter Setting
5.2. Verification on Simulation Data
5.3. Application to Bat Echo
5.4. Application to Electromagnetic Calculation Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, V.; Li, F.; Ho, S.S.; Wechsler, H. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Tian, X.; Bai, X.; Xue, R.; Qin, R.; Zhou, F. Fusion Recognition of Space Targets with Micro-Motion. IEEE Trans. Aerosp. Electron. Syst. 2022. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Jin, Y.; Yu, H.; Liang, B.; Yang, D.G. Real-Time Processing of Spaceborne SAR Data With Nonlinear Trajectory Based on Variable PRF. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5205212. [Google Scholar] [CrossRef]
- Li, G.; Varshney, P.K. Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4937–4948. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, Y. The extraction of micro-Doppler signal with EMD algorithm for radar-based small UAVs’ detection. IEEE Trans. Instrum. Meas. 2019, 69, 929–940. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Y.; Li, K.; Yuan, H.; Zhang, Q. Micro-Doppler Parameters Extraction of Precession Cone-Shaped Targets Based on Rotating Antenna. Remote Sens. 2022, 14, 2549. [Google Scholar] [CrossRef]
- Zhu, N.; Hu, J.; Xu, S.; Wu, W.; Zhang, Y.; Chen, Z. Micro-Motion Parameter Extraction for Ballistic Missile with Wideband Radar Using Improved Ensemble EMD Method. Remote Sens. 2021, 13, 3545. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, J.; Li, H. Micro-Doppler separation method in ISAR imaging based on short-time chirplet decomposition. J. Appl. Remote Sens. 2021, 15, 036515. [Google Scholar] [CrossRef]
- Choi, I.; Kang, K.; Kim, K.; Park, S. Use of ICA to Separate Micro-Doppler Signatures in ISAR Images of Aircraft That Has Fast-Rotating Parts. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 234–246. [Google Scholar] [CrossRef]
- Djurović, I.; Stanković, L. An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment. Signal Process. 2004, 84, 631–643. [Google Scholar] [CrossRef]
- Djurović, I.; Popović-Bugarin, V.; Simeunović, M. The STFT-based estimator of micro-Doppler parameters. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1273–1283. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Zhu, X. Adaptive S-Transform with Chirp-Modulated Window and Its Synchroextracting Transform. Circuits Syst. Signal Process. 2021, 40, 5654–5681. [Google Scholar] [CrossRef]
- Pang, C.; Han, Y.; Hou, H.; Liu, S.; Zhang, N. Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT. Sensors 2016, 16, 1559. [Google Scholar] [CrossRef] [PubMed]
- Boashash, B.; Black, P. An efficient real-time implementation of the Wigner-Ville distribution. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1611–1618. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Z.; Zhang, W.; Meng, G. Parameterised time–frequency analysis methods and their engineering applications: A review of recent advances. Mech. Syst. Signal Process. 2019, 119, 182–221. [Google Scholar] [CrossRef]
- Ai, X.; Xu, Z.; Wu, Q.; Liu, X.; Xiao, S. Parametric Representation and Application of Micro-Doppler Characteristics for Cone-Shaped Space Targets. IEEE Sens. J. 2019, 19, 11839–11849. [Google Scholar] [CrossRef]
- Meignen, S.; Pham, D.H.; McLaughlin, S. On demodulation, ridge detection, and synchrosqueezing for multicomponent signals. IEEE Trans. Signal Process. 2017, 65, 2093–2103. [Google Scholar] [CrossRef] [Green Version]
- Pan, P.; Zhang, Y.; Deng, Z.; Fan, S.; Huang, X. TFA-Net: A Deep Learning-Based Time-Frequency Analysis Tool. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Meignen, S.; Singh, N. Analysis of Reassignment Operators Used in Synchrosqueezing Transforms: With an Application to Instantaneous Frequency Estimation. IEEE Trans. Signal Process. 2021, 70, 216–227. [Google Scholar] [CrossRef]
- Oberlin, T.; Meignen, S.; Perrier, V. Second-Order Synchrosqueezing Transform or Invertible Reassignment? Towards Ideal Time-Frequency Representations. IEEE Trans. Signal Process. 2015, 63, 1335–1344. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Yu, M.; Xu, C. Synchroextracting transform. IEEE Trans. Ind. Electron. 2017, 64, 8042–8054. [Google Scholar] [CrossRef]
- Bao, W.; Li, F.; Tu, X.; Hu, Y.; He, Z. Second-order synchroextracting transform with application to fault diagnosis. IEEE Trans. Instrum. Meas. 2020, 70, 3509409. [Google Scholar] [CrossRef]
- Pham, D.H.; Meignen, S. High-Order Synchrosqueezing Transform for Multicomponent Signals Analysis—With an Application to Gravitational-Wave Signal. IEEE Trans. Signal Process. 2017, 65, 3168–3178. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, T.; Kong, Y.; Chu, F. Synchro-reassigning transform for instantaneous frequency estimation and signal reconstruction. IEEE Trans. Ind. Electron. 2021, 69, 7263–7274. [Google Scholar] [CrossRef]
- McAulay, R.; Quatieri, T. Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Rankine, L.; Mesbah, M.; Boashash, B. IF estimation for multicomponent signals using image processing techniques in the time–frequency domain. Signal Process. 2007, 87, 1234–1250. [Google Scholar] [CrossRef] [Green Version]
- Ren, K.; Du, L.; Lu, X.; Zhuo, Z.; Li, L. Instantaneous Frequency Estimation Based on Modified Kalman Filter for Cone-Shaped Target. Remote Sens. 2020, 12, 2766. [Google Scholar] [CrossRef]
- Hong, L.; Wang, X.; Liu, S. Micro-Doppler curves extraction based on high-order particle filter track-before detect. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1550–1554. [Google Scholar] [CrossRef]
- Zhu, N.; Xu, S.; Li, C.; Hu, J.; Fan, X.; Wu, W.; Chen, Z. An Improved Phase-Derived Range Method Based on High-Order Multi-Frame Track-Before-Detect for Warhead Detection. Remote Sens. 2022, 14, 29. [Google Scholar] [CrossRef]
- Chen, S.; Dong, X.; Xing, G.; Peng, Z.; Zhang, W.; Meng, G. Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition. IEEE Sens. J. 2017, 17, 5994–6005. [Google Scholar] [CrossRef]
- Barbarossa, S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Trans. Signal Process. 1995, 43, 1511–1515. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, R.; She, Y.; Jin, B.; Peng, Y. Micro-Doppler Trajectory Estimation of Human Movers by Viterbi–Hough Joint Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5113111. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Zhang, L.; Xiao, J. Micro-Doppler Curves Extraction and Parameters Estimation for Cone-Shaped Target with Occlusion Effect. IEEE Sens. J. 2018, 18, 2892–2902. [Google Scholar] [CrossRef]
- Shi, Y.; Jiu, B.; Liu, H. Optimization-Based Discontinuous Observation Strategy for Micro-Doppler Signature Extraction of Space Cone Targets. IEEE Access 2019, 7, 58915–58929. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, G.C. Motion Compensation/Autofocus in Airborne Synthetic Aperture Radar: A Review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 185–206. [Google Scholar] [CrossRef]
A | N | N | N | Y |
B | N | N | N | N |
C | N | Y | N | N |
Parameter | Value |
---|---|
Carrier frequency | 10 GHz |
Sampling rate | 1000 Hz |
Sampling time t | 1 s |
Average of viewing angle | 60 |
Azimuth angle | 90 |
Angular velocity of the cone | rad/s |
Cone angle | 8 |
Angular velocity of the wobble | rad/s |
Amplitude of the wobble | 2 |
Semi-cone angle | 14 |
TFR | STFT | SST | SST2 | SET | SET2 | SRT | MSRT |
---|---|---|---|---|---|---|---|
Rényi | 19.2569 | 17.1664 | 14.7468 | 14.5391 | 13.1459 | 12.5594 | 13.0054 |
Time (s) | 1.645 | 1.1864 | 2.8500 | 1.0315 | 2.2898 | 0.3894 | 0.9914 |
RMSE | 2.1561 | 3.1588 | 1.5984 | 2.1561 | 1.5546 | 2.1578 | 1.5581 |
TFR | STFT | SST | SST2 | SET | SET2 | SRT | MSRT |
---|---|---|---|---|---|---|---|
RMSE | 2.1561 | 3.1588 | 1.5984 | 2.1561 | 1.5546 | 2.1578 | 1.5581 |
Out SNR (dB) | 4.8072 | 4.7943 | 14.1388 | 3.3783 | 14.3297 | 4.8072 | 14.2471 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wang, X.; Li, J.; Peng, Z. Micro-Doppler Curves Extraction of Space Target Based on Modified Synchro-Reassigning Transform and Ridge Segment Linking. Remote Sens. 2022, 14, 3691. https://doi.org/10.3390/rs14153691
Yang D, Wang X, Li J, Peng Z. Micro-Doppler Curves Extraction of Space Target Based on Modified Synchro-Reassigning Transform and Ridge Segment Linking. Remote Sensing. 2022; 14(15):3691. https://doi.org/10.3390/rs14153691
Chicago/Turabian StyleYang, Degui, Xing Wang, Jin Li, and Zhenghong Peng. 2022. "Micro-Doppler Curves Extraction of Space Target Based on Modified Synchro-Reassigning Transform and Ridge Segment Linking" Remote Sensing 14, no. 15: 3691. https://doi.org/10.3390/rs14153691
APA StyleYang, D., Wang, X., Li, J., & Peng, Z. (2022). Micro-Doppler Curves Extraction of Space Target Based on Modified Synchro-Reassigning Transform and Ridge Segment Linking. Remote Sensing, 14(15), 3691. https://doi.org/10.3390/rs14153691