Meticulous Land Cover Classification of High-Resolution Images Based on Interval Type-2 Fuzzy Neural Network with Gaussian Regression Model
Abstract
:1. Introduction
Method Principle | Major Inadequacies |
---|---|
Type-1 fuzzy clustering algorithm [40,41]. | Low ability to deal with uncertainty. |
Integrate statistical models into fuzzy structures [20,21]. Integrated adaptive interval-valued modeling and spatial information [42]. | Vulnerable to initial values; outliers and noise; too many iterations. |
Application of interval type-2 fuzzy neural network to deal with uncertainty [29]. | The classification effect contains more regional noise, and the anti-noise ability needs to be further improved. |
Spatial–spectral attention fusion network using four branch multiscale block [37]. An end-to-end framework using convolutional neural networks is proposed for pixel-level classification of images [38]. | Large training samples and time consumption. |
A supervised maximum likelihood classification method using mean vectors and covariance measures [43]. | Low universality and low robustness. |
2. Materials and Methods
2.1. Type-1 Gaussian Regression Model
2.2. Internal Type-2 Gaussian Regression Model
2.2.1. IT2FM with an Uncertain Mean Value
2.2.2. IT2FM with an Uncertain Mean Value
2.2.3. Fitting Model
2.3. Classification Decision Model
- Input layer
- 2.
- Fuzzification layer
- 3.
- Fuzzy inference layer (membership function layer)
- 4.
- Deblurring layer
- 5.
- Output layer
2.4. Local Neighborhood Pixel Information
2.5. Flow of the IT2FNN_GRM Method
- Step 1: The test images with different scales, resolutions, and multiple scenes are selected from different remote sensing satellite images.
- Step 2: Supervised sampling is adopted for the real images and random sampling is used for the synthetic images, and different training samples’ quantities, areas, and densities are selected.
- Step 3: The histogram frequency of each training sample in the homogeneous region is calculated. The T1FM membership function model of the homogeneous region (Equation (1)) is constructed, and the weight and offset of each category is estimated by Equation (2).
- Step 4: According to Equations (3)–(8), the IT2FM is established, and the initial parameters or are given.
- Step 5: The T1FM membership degree of the training samples in all categories and the upper and lower membership degrees in the IT2FM membership function are taken as the input. The IT2FNN model is established according to Equations (11) and (12). Then, the adjustment factor or , the weight parameter , and the offset are adaptively determined.
- Step 6: The high-resolution remote sensing images are divided according to Equation (14).
3. Land Cover Classification Experiments
3.1. Land Cover Classification for Synthetic Images
3.2. Land Cover Classification for Real Images
3.2.1. QuickBird Satellite Images
3.2.2. WorldView-2 Satellite Images
4. Discussion
4.1. Effect of Fitting Model and Classification Decision Model on Classification Performance
4.2. Limitations and Prospects of Interval Type-2 in High-Resolution Land Cover Classification Research
4.3. Limitations and Prospects of Land Cover Classification in High-Resolution Remote Sensing Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very High-Resolution Remote Sensing: Challenges and Opportunities [Point of View]. Proc. IEEE 2012, 100, 1907–1910. [Google Scholar] [CrossRef]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial Analysis of Remote Sensing Image Classification Accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Qi, Z.; Liu, X.; Niu, N.; Zhang, H. Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data. Remote Sens. 2019, 11, 2719. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Zhu, Q.; Zhang, L. Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6207–6222. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Wang, X.; Zhang, Z.; Nawaz, Z. Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform. Remote Sens. 2021, 13, 5064. [Google Scholar] [CrossRef]
- Schindler, K. An Overview and Comparison of Smooth Labeling Methods for Land-Cover Classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4534–4545. [Google Scholar] [CrossRef]
- Wang, C.; Shao, F.; Zhang, Z.; Sui, Y.; Li, S. Mining the Features of Spatial Adjacency Relationships to Improve the Classification of High Resolution Remote Sensing Images Based on Complex Network. Appl. Soft Comput. 2021, 102, 107089. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-Contextual Information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Martins, V.S.; Kaleita, A.L.; Gelder, B.K.; da Silveira, H.L.F.; Abe, C.A. Exploring Multiscale Object-Based Convolutional Neural Network (Multi-OCNN) for Remote Sensing Image Classification at High Spatial Resolution. ISPRS J. Photogramm. Remote Sens. 2020, 168, 56–73. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Gorokhovatskyi, V.O.; Tvoroshenko, I.S.; Vlasenko, N.V. Using Fuzzy Clustering in Structural Methods of Image Classification. Telecommun. Radio Eng. 2020, 79, 781–791. [Google Scholar] [CrossRef]
- Chen, W.; Giger, M.L.; Bick, U. A Fuzzy C-Means (FCM)-Based Approach for Computerized Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images1. Acad. Radiol. 2006, 13, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Soler, L.S.; Kok, K.; Camara, G.; Veldkamp, A. Using Fuzzy Cognitive Maps to Describe Current System Dynamics and Develop Land Cover Scenarios: A Case Study in the Brazilian Amazon. J. Land Use Sci. 2012, 7, 149–175. [Google Scholar] [CrossRef] [Green Version]
- Ortiz Toro, C.; Gonzalo Martín, C.; García Pedrero, Á.; Menasalvas Ruiz, E. Superpixel-Based Roughness Measure for Multispectral Satellite Image Segmentation. Remote Sens. 2015, 7, 14620–14645. [Google Scholar] [CrossRef] [Green Version]
- Kannan, S.R.; Devi, R.; Ramathilagam, S.; Takezawa, K. Effective FCM Noise Clustering Algorithms in Medical Images. Comput. Biol. Med. 2013, 43, 73–83. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Ghaffarian, S. Automatic Histogram-Based Fuzzy C-Means Clustering for Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 46–57. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, T.; Feng, G.; Ni, M.; Ou, S. A Fuzzy C-Means Clustering Algorithm Based on Spatial Context Model for Image Segmentation. Int. J. Fuzzy Syst. 2021, 23, 816–832. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Yamany, S.M.; Mohamed, N.; Farag, A.A.; Moriarty, T. A Modified Fuzzy C-Means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Trans. Med. Imaging 2002, 21, 193–199. [Google Scholar] [CrossRef]
- Chatzis, S.P.; Varvarigou, T.A. A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation. IEEE Trans. Fuzzy Syst. 2008, 16, 1351–1361. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Li, Y.; Zhao, X. A Fuzzy Clustering Image Segmentation Algorithm Based on Hidden Markov Random Field Models and Voronoi Tessellation. Pattern Recognit. Lett. 2017, 85, 49–55. [Google Scholar] [CrossRef]
- Tirandaz, Z.; Akbarizadeh, G.; Kaabi, H. PolSAR Image Segmentation Based on Feature Extraction and Data Compression Using Weighted Neighborhood Filter Bank and Hidden Markov Random Field-Expectation Maximization. Measurement 2020, 153, 107432. [Google Scholar] [CrossRef]
- Mendel, J.M.; John, R.I.B. Type-2 Fuzzy Sets Made Simple. IEEE Trans. Fuzzy Syst. 2002, 10, 117–127. [Google Scholar] [CrossRef]
- Moreno, J.E.; Sanchez, M.A.; Mendoza, O.; Rodríguez-Díaz, A.; Castillo, O.; Melin, P.; Castro, J.R. Design of an Interval Type-2 Fuzzy Model with Justifiable Uncertainty. Inf. Sci. 2020, 513, 206–221. [Google Scholar] [CrossRef]
- Mittal, K.; Jain, A.; Vaisla, K.S.; Castillo, O.; Kacprzyk, J. A Comprehensive Review on Type 2 Fuzzy Logic Applications: Past, Present and Future. Eng. Appl. Artif. Intell. 2020, 95, 103916. [Google Scholar] [CrossRef]
- Liu, X.; Dai, J.; Chen, J.; Wang, C.; Zhan, J. Measures of Uncertainty Based on Gaussian Kernel for Type-2 Fuzzy Information Systems. Int. J. Fuzzy Syst. 2021, 23, 1163–1178. [Google Scholar] [CrossRef]
- Xu, J.; Feng, G.; Zhao, T.; Sun, X.; Zhu, M. Remote Sensing Image Classification Based on Semi-Supervised Adaptive Interval Type-2 Fuzzy c-Means Algorithm. Comput. Geosci. 2019, 131, 132–143. [Google Scholar] [CrossRef]
- Choi, B.-I.; Chung-Hoon Rhee, F. Interval Type-2 Fuzzy Membership Function Generation Methods for Pattern Recognition. Inf. Sci. 2009, 179, 2102–2122. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, N.; Cai, M.; Cao, C.; Yang, J.; Zhang, Z. A Spatially Constrained Asymmetric Gaussian Mixture Model for Image Segmentation. Inf. Sci. 2021, 575, 41–65. [Google Scholar] [CrossRef]
- Wang, C.; Xu, A.; Li, C.; Zhao, X. Interval Type-2 Fuzzy Based Neural Network for High Resolution Remote Sensing Image Segmentation. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Castillo, O.; Castro, J.R.; Melin, P.; Rodriguez-Diaz, A. Application of Interval Type-2 Fuzzy Neural Networks in Non-Linear Identification and Time Series Prediction. Soft Comput. 2014, 18, 1213–1224. [Google Scholar] [CrossRef]
- Tavoosi, J. A Novel Recurrent Type-2 Fuzzy Neural Network for Stepper Motor Control. Mechatron. Syst. Control 2021, 49, 2021–2201. [Google Scholar] [CrossRef]
- Wang, C.; Xu, A.; Li, X. Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function. Remote Sens. 2018, 10, 710. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Guo, X. A Novel Single Fuzzifier Interval Type-2 Fuzzy C-Means Clustering with Local Information for Land-Cover Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5903–5917. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Xu, Z.; Bai, Y. Gain Adaptive Sliding Mode Controller Based on Interval Type-II Fuzzy Neural Network Designed for Attitude Control for Micro Aircraft Vehicle. Int. J. Intell. Comput. Cybern. 2014, 7, 209–226. [Google Scholar] [CrossRef]
- Rezaie, V.; Parnianifard, A. A New Intelligent System for Diagnosing Tumors with MR Images Using Type-2 Fuzzy Neural Network (T2FNN). Multimed. Tools Appl. 2022, 81, 2333–2363. [Google Scholar] [CrossRef]
- Baklouti, N.; Abraham, A.; Alimi, A.M. A Beta Basis Function Interval Type-2 Fuzzy Neural Network for Time Series Applications. Eng. Appl. Artif. Intell. 2018, 71, 259–274. [Google Scholar] [CrossRef]
- Shi, C.; Sun, J.; Wang, L. Hyperspectral Image Classification Based on Spectral Multiscale Convolutional Neural Network. Remote Sens. 2022, 14, 1951. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, Z.; Cao, L.; Balas, V.E.; Dey, N.; Ashour, A.S.; McCauley, P.; Dimitra, S.-P.; Shi, F. Image Fusion Incorporating Parameter Estimation Optimized Gaussian Mixture Model and Fuzzy Weighted Evaluation System: A Case Study in Time-Series Plantar Pressure Data Set. IEEE Sens. J. 2017, 17, 1407–1420. [Google Scholar] [CrossRef]
- D’Urso, P. Informational Paradigm, Management of Uncertainty and Theoretical Formalisms in the Clustering Framework: A Review. Inf. Sci. 2017, 400–401, 30–62. [Google Scholar] [CrossRef] [Green Version]
- Smits, P.C. Multiple Classifier Systems for Supervised Remote Sensing Image Classification Based on Dynamic Classifier Selection. IEEE Trans. Geosci. Remote Sens. 2002, 40, 801–813. [Google Scholar] [CrossRef]
- Xu, J.; Feng, G.; Fan, B.; Yan, W.; Zhao, T.; Sun, X.; Zhu, M. Landcover Classification of Satellite Images Based on an Adaptive Interval Fuzzy C-Means Algorithm Coupled with Spatial Information. Int. J. Remote Sens. 2020, 41, 2189–2208. [Google Scholar] [CrossRef]
- Sisodia, P.S.; Tiwari, V.; Kumar, A. Analysis of Supervised Maximum Likelihood Classification for Remote Sensing Image. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; pp. 1–4. [Google Scholar]
- Xing, H.; He, H.; Hu, D.; Jiang, T.; Yu, X. An Interval Type-2 Fuzzy Sets Generation Method for Remote Sensing Imagery Classification. Comput. Geosci. 2019, 133, 104287. [Google Scholar] [CrossRef]
- Morales-Alvarez, P.; Perez-Suay, A.; Molina, R.; Camps-Valls, G. Remote Sensing Image Classification with Large-Scale Gaussian Processes. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Kayacan, E.; Sarabakha, A.; Coupland, S.; John, R.; Khanesar, M.A. Type-2 Fuzzy Elliptic Membership Functions for Modeling Uncertainty. Eng. Appl. Artif. Intell. 2018, 70, 170–183. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Du, S.; Huo, H.; Du, S.; Zhang, X. Modelling the Spectral Uncertainty of Geographic Features in High-Resolution Remote Sensing Images: Semi-Supervising and Weighted Interval Type-2 Fuzzy C-Means Clustering. Remote Sens. 2019, 11, 1750. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Ying, H.; Zhang, C. Effects of Increasing the Footprints of Uncertainty on Analytical Structure of the Classes of Interval Type-2 Mamdani and TS Fuzzy Controllers. IEEE Trans. Fuzzy Syst. 2019, 27, 1881–1890. [Google Scholar] [CrossRef]
- Shukla, A.K.; Muhuri, P.K. Big-Data Clustering with Interval Type-2 Fuzzy Uncertainty Modeling in Gene Expression Datasets. Eng. Appl. Artif. Intell. 2019, 77, 268–282. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Zhou, H.; Tan, S.; Zhang, C.; Duan, J. Regulated Kalman Filter Based Training of an Interval Type-2 Fuzzy System and Its Evaluation. Eng. Appl. Artif. Intell. 2020, 95, 103867. [Google Scholar] [CrossRef]
- Tong, X.-Y.; Xia, G.-S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.R.B.; Acosta, E.A.; Dennedy-Frank, P.J.; Kroeger, T.; Boucher, T.M. Impact of Satellite Imagery Spatial Resolution on Land Use Classification Accuracy and Modeled Water Quality. Remote Sens. Ecol. Conserv. 2018, 4, 137–149. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Radabaugh, K.R.; Moyer, R.P.; Muller-Karger, F.E. Enabling Efficient, Large-Scale High-Spatial Resolution Wetland Mapping Using Satellites. Remote Sens. Environ. 2018, 208, 189–201. [Google Scholar] [CrossRef]
- Alem, A.; Kumar, S. Transfer Learning Models for Land Cover and Land Use Classification in Remote Sensing Image. Appl. Artif. Intell. 2022, 36, 2014192. [Google Scholar] [CrossRef]
Images | Color | Land Cover Description | Training Pixels’ Percentage | Total |
---|---|---|---|---|
Figure 5(a1–a6) | Paddy fields | 7.5% | 30.0% | |
Forests | 7.5% | |||
Cement pavements | 7.5% | |||
Water | 7.5% | |||
Figure 5(b1–b6) | Roofs | 7.5% | 30.0% | |
Suburbs | 7.5% | |||
Wetlands | 7.5% | |||
Grasslands | 7.5% |
Algorithms | Precision Index | Land Cover Category | |||||
---|---|---|---|---|---|---|---|
OA (%) | Kappa | Measurement (%) | Paddy Fields | Forest | Cement Pavement | Water | |
FCM | 69.9 | 0.596 | PA | 73.1 | 27.4 | 99.8 | 62.3 |
UA | 63.1 | 17.7 | 98.6 | 92.9 | |||
HMRF-FCM | 87.4 | 0.830 | PA | 70.2 | 95.7 | 87.5 | 94.9 |
UA | 99.9 | 58.2 | 99.7 | 86.3 | |||
IT2FM_GM | 83.9 | 0.784 | PA | 78.4 | 65.6 | 99.6 | 90.5 |
UA | 91.2 | 66.0 | 89.1 | 86.2 | |||
IT2FNN | 96.1 | 0.948 | PA | 92.1 | 97.3 | 95.5 | 99.8 |
UA | 99.4 | 87.9 | 97.2 | 99.8 | |||
IT2FM_NWA | 99.0 | 0.987 | PA | 98.4 | 99.5 | 99.5 | 98.5 |
UA | 99.8 | 97.2 | 99.6 | 99.4 | |||
IT2FNN_GRM | 99.9 | 0.998 | PA | 100.0 | 99.9 | 99.8 | 100.0 |
UA | 99.8 | 100.0 | 100.0 | 100.0 |
Algorithms | Precision Index | Land Cover Category | |||||
---|---|---|---|---|---|---|---|
OA (%) | Kappa | Measurement (%) | Roofs | Suburbs | Wetlands | Grasslands | |
FCM | 59.6 | 0.468 | PA | 95.2 | 45.5 | 68.7 | 0.61 |
UA | 68.5 | 84.9 | 92.6 | 0.24 | |||
HMRF-FCM | 83.2 | 0.770 | PA | 97.0 | 74.7 | 99.4 | 65.8 |
UA | 99.9 | 71.2 | 73.3 | 80.6 | |||
IT2FM_GM | 81.1 | 0.745 | PA | 97.0 | 62.5 | 92.5 | 67.3 |
UA | 99.5 | 64.4 | 84.7 | 67.9 | |||
IT2FNN | 98.9 | 0.985 | PA | 99.1 | 99.0 | 97.7 | 99.6 |
UA | 99.8 | 98.8 | 99.1 | 97.8 | |||
IT2FM_NWA | 98.6 | 0.981 | PA | 99.7 | 97.9 | 98.2 | 99.1 |
UA | 99.6 | 98.8 | 98.4 | 97.6 | |||
IT2FNN_GRM | 99.9 | 0.998 | PA | 99.9 | 99.8 | 99.9 | 99.9 |
UA | 99.9 | 99.9 | 99.9 | 99.8 |
Images | Color | Land Cover Description | Training Pixels’ Percentage | Total |
---|---|---|---|---|
Figure 6(a1–a6) | Paddy fields | 7.0% | 20.0% | |
Forest | 3.0% | |||
Cement floor | 4.0% | |||
Water | 6.0% | |||
Figure 6(b1–b6) | Roofs | 1.0% | 20.0% | |
Suburbs | 3.0% | |||
Wetlands | 4.0% | |||
Grasslands | 3.0% | |||
Snow | 4.0% | |||
Ice–water mixture | 5.0% | |||
Figure 6(c1–c6) | Buildings | 7.0% | 20.0% | |
Roads | 3.0% | |||
Grasslands | 6.0% | |||
Shadows | 4.0% |
Images | Precision Index | Algorithms | |||||
---|---|---|---|---|---|---|---|
FCM | HMRF-FCM | IT2FM_GM | IT2FNN | IT2FM_NWA | IT2FNN_GRM | ||
Figure 6a | OA (%) | 92.2 | 93.6 | 91.9 | 97.8 | 96.7 | 98.9 |
Kappa | 0.879 | 0.905 | 0.867 | 0.963 | 0.945 | 0.978 | |
Time (s) | 37.31 | 5.32 | 1.56 | 2.15 | 1.84 | 2.26 | |
Figure 6b | OA (%) | 73.5 | 86.9 | 96.1 | 97.6 | 98.4 | 99.2 |
Kappa | 0.634 | 0.822 | 0.944 | 0.967 | 0.975 | 0.987 | |
Time (s) | 105.21 | 35.75 | 2.45 | 3.19 | 2.85 | 3.27 | |
Figure 6c | OA (%) | 79.4 | 95.4 | 83.9 | 98.5 | 98.9 | 99.5 |
Kappa | 0.707 | 0.921 | 0.755 | 0.974 | 0.982 | 0.991 | |
Time (s) | 34.54 | 6.35 | 1.78 | 2.91 | 2.05 | 3.17 |
Images | Color | Land Cover Description | Training Pixels’ Percentage | Total |
---|---|---|---|---|
Figure 7(a1–a6) | Steel buildings | 8.0% | 25.0% | |
Cement buildings | 4.0% | |||
Greenbelt | 6.0% | |||
Ground | 7.0% | |||
Figure 7(b1–b6) | Farmland | 10.0% | 30.0% | |
Water | 11.0% | |||
Forest | 9.0% |
Images | Precision Index | Algorithms | |||||
---|---|---|---|---|---|---|---|
FCM | HMRF-FCM | IT2FM_GM | IT2FNN | IT2FM_NWA | IT2FNN_GRM | ||
Figure 7a | OA (%) | 77.7 | 86.5 | 95.2 | 95.3 | 97.6 | 98.6 |
Kappa | 0.692 | 0.806 | 0.931 | 0.933 | 0.964 | 0.976 | |
Time (s) | 105.37 | 14.85 | 10.21 | 12.21 | 10.98 | 13.38 | |
Figure 7b | OA (%) | 93.9 | 97.1 | 91.7 | 98.1 | 97.5 | 98.5 |
Kappa | 0.887 | 0.945 | 0.850 | 0.963 | 0.954 | 0.971 | |
Time (s) | 1371.65 | 186.01 | 104.23 | 112.24 | 106.84 | 116.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, X.; Wu, D.; Kuang, M.; Li, Z. Meticulous Land Cover Classification of High-Resolution Images Based on Interval Type-2 Fuzzy Neural Network with Gaussian Regression Model. Remote Sens. 2022, 14, 3704. https://doi.org/10.3390/rs14153704
Wang C, Wang X, Wu D, Kuang M, Li Z. Meticulous Land Cover Classification of High-Resolution Images Based on Interval Type-2 Fuzzy Neural Network with Gaussian Regression Model. Remote Sensing. 2022; 14(15):3704. https://doi.org/10.3390/rs14153704
Chicago/Turabian StyleWang, Chunyan, Xiang Wang, Danfeng Wu, Minchi Kuang, and Zhengtong Li. 2022. "Meticulous Land Cover Classification of High-Resolution Images Based on Interval Type-2 Fuzzy Neural Network with Gaussian Regression Model" Remote Sensing 14, no. 15: 3704. https://doi.org/10.3390/rs14153704
APA StyleWang, C., Wang, X., Wu, D., Kuang, M., & Li, Z. (2022). Meticulous Land Cover Classification of High-Resolution Images Based on Interval Type-2 Fuzzy Neural Network with Gaussian Regression Model. Remote Sensing, 14(15), 3704. https://doi.org/10.3390/rs14153704