Marine Oil Spill Detection with X-Band Shipborne Radar Using GLCM, SVM and FCM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Data Preprocessing
2.3. Methods
2.3.1. GLCM
2.3.2. SVM
2.3.3. FCM
2.3.4. ACM
3. Results
3.1. Local Window Feature Extraction
3.2. Effective Sea Wave Monitoring Regions Extraction
3.3. Oil films Identificaiton
4. Discussion
4.1. Selection of Local Window Size
4.2. Selection of GLCM Features
4.3. Comparation with An Improved ACM
4.4. Comparation with Another Oil Film Detection Method with SVM and Adaptive Threshold
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kieu, H.T.; Law, A.W.K. Remote sensing of coastal hydro-environment with portable unmanned aerial vehicles (pUAVs) a state-of-the-art review. J. Hydro-Environ. Res. 2021, 37, 32–45. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Li, Y.; Li, J.; Liu, J.G.; Gao, Z.Y.; Guo, K.X.; Yu, H. The influence of Stokes drift on oil spills: Sanchi oil spill case. Acta Oceanol. Sin. 2021, 40, 30–37. [Google Scholar] [CrossRef]
- Oliveira, L.G.; Araujo, K.C.; Barreto, M.C.; Bastos, M.E.P.A.; Lemos, S.G.; Fragoso, W.D. Applications of chemometrics in oil spill studies. Microchem. J. 2021, 166, 106216. [Google Scholar] [CrossRef]
- Kim, T.; Shin, H.K.; Jang, S.Y.; Ryu, J.M.; Kim, P.; Yang, C.S. Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident. Korean J. Remote Sens. 2021, 37, 1773–1784. [Google Scholar]
- Dearden, C.; Culmer, T.; Brooke, R. Performance measures for validation of oil spill dispersion models based on satellite and coastal data. IEEE J. Ocean. Eng. 2022, 44, 126–140. [Google Scholar] [CrossRef]
- Dasari, K.; Anjaneyulu, L.; Nadimikeri, J. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India. Mar. Pollut. Bull. 2022, 174, 113182. [Google Scholar] [CrossRef]
- Mohammadiun, S.; Hu, G.J.; Gharahbagh, A.A.; Li, J.B.; Hewage, K.; Sadiq, R. Intelligent computational techniques in marine oil spill management: A critical review. J. Hazard. Mater. 2021, 419, 126425. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Homayouni, S.; Mohammadimanesh, F.; Dabboor, M. Oil spill detection from Synthetic Aperture Radar Earth observations: A meta-analysis and comprehensive review. GIScience Remote Sens. 2021, 58, 1022–1051. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, A.H.; Balzter, H.; Ren, P.; Zhou, H.Y. Oil spill SAR image segmentation via probability distribution modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 533–554. [Google Scholar] [CrossRef]
- Rousso, R.; Katz, N.; Sharon, G.; Glizerin, Y.; Kosman, E.; Shuster, A. Automatic recognition of oil spills using neural networks and classic image processing. Water 2022, 14, 1127. [Google Scholar] [CrossRef]
- Wang, D.; Wan, J.; Liu, S.; Chen, Y.; Yasir, M.; Xu, M.; Ren, P. BO-DRNet: An improved deep learning model for oil spill detection by polarimetric features from SAR images. Remote Sens. 2022, 14, 264. [Google Scholar] [CrossRef]
- Almulihi, A.; Alharithi, F.; Bourouis, S.; Alroobaea, R.; Pawar, Y.; Bouguila, N. Oil spill detection in SAR images using online extended variational learning of Dirichlet Process Mixtures of Gamma Distributions. Remote Sens. 2021, 13, 2991. [Google Scholar] [CrossRef]
- Rajendran, S.; Vethamony, P.; Sadooni, F.N.; Al-Kuwari, H.A.; Al-Khayat, J.A.; Seegobin, V.O.; Govil, H.; Nasir, S. Detection of Wakashio oil spill off Mauritius using Sentinel-1 and 2 data: Capability of sensors, image transformation methods and mapping. Environ. Pollut. 2021, 274, 116618. [Google Scholar] [CrossRef]
- Rao, V.T.; Suneel, V.; Alex, M.J.; Gurumoorthi, K.; Thomas, A.P. Assessment of MV Wakashio oil spill off Mauritius, Indian Ocean through satellite imagery: A case study. J. Earth Syst. Sci. 2022, 131, 21. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Li, G.; Liu, A. A Spectral Feature based Convolutional Neural Network for classification of sea surface oil spill. ISPRS Int. J. Geo-Inf. 2019, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Lu, S.J. Subcategory-Aware Feature Selection and SVM optimization for automatic aerial image-based oil spill inspection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5264–5273. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, H.; Li, Y.; Liu, B.; Liu, P. Oil spill identification in radar images using a soft attention segmentation model. Remote Sens. 2022, 14, 2180. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Li, Y.; Feng, H.; Liu, B.X.; Xu, J. Oil spill detection method using X-band marine radar imagery. J. Appl. Remote Sens. 2015, 9, 095985. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Xu, J.; Zhu, X.Y. Adaptive enhancement of X-band marine radar imagery to detect oil spill segments. Sensors 2017, 17, 2349. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, P.; Wang, H.; Lian, J.J.; Li, B. Marine radar oil spill monitoring technology based on dual-threshold and C-V level set methods. J. Indian Soc. Remote Sens. 2018, 46, 1949–1961. [Google Scholar] [CrossRef]
- Xu, J.; Cui, C.; Feng, H.Y.; You, D.M.; Wang, H.X.; Li, B. Marine radar oil spill monitoring through local adaptive thresholding. Environ. Forensics 2019, 20, 196–209. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Liu, B.; Chen, P.; Xu, J. Semi-Automatic oil spill detection on X-band marine radar images using texture analysis, machine learning, and adaptive thresholding. Remote Sens. 2019, 11, 756. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, H.; Cui, C.; Zhao, B.G.; Li, B. Oil spill monitoring of shipborne radar image features using SVM and Local Adaptive Threshold. Algorithms 2020, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Li, Y.; Xu, J.; Wang, T. Oil spill extraction by X-band marine radar using texture analysis and adaptive thresholding. Remote Sens. Lett. 2019, 1, 583–589. [Google Scholar] [CrossRef]
- Xu, J.; Pan, X.X.; Jia, B.B.; Wu, X.X.; Liu, P.; Li, B. Oil spill detection using LBP feature and K-Means clustering in shipborne radar image. J. Mar. Sci. Eng. 2021, 9, 65. [Google Scholar] [CrossRef]
- Xu, J.; Jia, B.Z.; Pan, X.X.; Li, R.H.; Cao, L.; Cui, C.; Wang, H.H.; Li, B. Hydrographic data inspection and disaster monitoring using shipborne radar small range images with electronic navigation chart. PeerJ Comput. Sci. 2020, 6, e290. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pan, X.X.; Wu, X.R.; Jia, B.Z.; Fei, J.; Wang, H.X.; Li, B.; Cui, C. Oil spill discrimination of multi-time-domain shipborne radar images using active contour model. Geosci. Lett. 2021, 8, 7. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Cui, C.; Liu, P.; Zhao, Y.; Li, B. Oil spill segmentation in shipborne radar images with an improved active contour model. Remote Sens. 2019, 11, 1698. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Benco, M.; Hudec, R.; Kamencay, P.; Zachariasova, M.; Matuska, S. An advanced approach to extraction of colour texture features based on GLCM. Int. J. Adv. Robot. Syst. 2014, 11, 104. [Google Scholar] [CrossRef]
- Iqbal, N.; Mumtaz, R.; Shafi, U.; Zaidi, S.M.H. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms. PeerJ Comput. Sci. 2021, 7, e536. [Google Scholar] [CrossRef] [PubMed]
- Tamal, M. A Phantom Study to Investigate Robustness and Reproducibility of Grey Level Co-Occurrence Matrix (GLCM)-Based Radiomics Features for PET. Appl. Sci. 2021, 11, 535. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum: New York, NY, USA, 1981. [Google Scholar]
- Gan, H. Safe Semi-Supervised Fuzzy C-Means Clustering. IEEE Access 2019, 7, 95659–95664. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.M.; Kao, C.Y.; Gore, J.C.; Ding, Z. Minimization of regionscalable fitting energy for image segmentation. IEEE Trans. Image Process. 2008, 17, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
Parameter Name | Parameter Value |
---|---|
Product manufacturer and model | Sperry Marine B.V. |
Electromagnetic spectrum | X-band |
Pulse repetition frequency | 3000 Hz/1800 Hz/785 Hz |
Pulse width | 50 ns/250 ns/750 ns |
Video image range | 0.5/0.75/1.5/3/6/12 NM |
Antenna type | Waveguide split antenna |
Antenna length | 8 ft |
Polarization mode | Horizontal |
Horizontal detection angle | 360° |
Rotation speed | 28–45 revolutions/min |
Local Window Size | Tiles Generation (s) | Feature Map Generation (s) | SVM Classification (s) | Summary (s) |
---|---|---|---|---|
32 × 32 | 2.08 | 19.62 | 1.11 | 22.81 |
64 × 64 | 0.53 | 4.75 | 0.98 | 6.26 |
128 × 128 | 0.20 | 1.53 | 0.96 | 2.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Xu, J.; Pan, X.; Ma, L.; Zhao, Z.; Chen, R.; Liu, Q.; Wang, H. Marine Oil Spill Detection with X-Band Shipborne Radar Using GLCM, SVM and FCM. Remote Sens. 2022, 14, 3715. https://doi.org/10.3390/rs14153715
Li B, Xu J, Pan X, Ma L, Zhao Z, Chen R, Liu Q, Wang H. Marine Oil Spill Detection with X-Band Shipborne Radar Using GLCM, SVM and FCM. Remote Sensing. 2022; 14(15):3715. https://doi.org/10.3390/rs14153715
Chicago/Turabian StyleLi, Bo, Jin Xu, Xinxiang Pan, Long Ma, Zhiqiang Zhao, Rong Chen, Qiao Liu, and Haixia Wang. 2022. "Marine Oil Spill Detection with X-Band Shipborne Radar Using GLCM, SVM and FCM" Remote Sensing 14, no. 15: 3715. https://doi.org/10.3390/rs14153715
APA StyleLi, B., Xu, J., Pan, X., Ma, L., Zhao, Z., Chen, R., Liu, Q., & Wang, H. (2022). Marine Oil Spill Detection with X-Band Shipborne Radar Using GLCM, SVM and FCM. Remote Sensing, 14(15), 3715. https://doi.org/10.3390/rs14153715