Soil Texture and Its Relationship with Environmental Factors on the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Observation Data
2.3. Data Processing and Analysis
2.4. Environmental Covariates
2.5. Random Forest Model
2.6. Accuracy Validation
3. Results
3.1. Statistical Summary of Soil Texture Samples
3.2. Model Accuracy Evaluation
3.3. Spatial Patterns of Predictions
3.4. Controlling Factors of QTP Soil Texture Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adhikari, K.; Kheir, R.B.; Greve, M.B.; Bøcher, P.K.; Malone, B.P.; Minasny, B.; McBratney, A.B.; Greve, M.H. High-Resolution 3-D Mapping of Soil Texture in Denmark. Soil Sci. Soc. Am. J. 2013, 77, 860–876. [Google Scholar] [CrossRef]
- Fernandez-Illescas, C.P.; Porporato, A.; Laio, F.; Rodriguez-Iturbe, I. The ecohydrological role of soil texture in a water-limited ecosystem. Water Resour. Res. 2001, 37, 2863–2872. [Google Scholar] [CrossRef]
- Safari, Y.; Boroujeni, I.E.; Kamali, A.; Salehi, M.H.; Bodaghabadi, M.B. Mapping of the soil texture using geostatistical method (a case study of the Shahrekord plain, central Iran). Arab. J. Geosci. 2012, 6, 3331–3339. [Google Scholar] [CrossRef]
- Shwetha, P.; Varija, K. Soil Water Retention Curve from Saturated Hydraulic Conductivity for Sandy Loam and Loamy Sand Textured Soils. Aquat. Procedia 2015, 4, 1142–1149. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal Properties of Soils as affected by Density and Water Content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, G.-L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Lehmann, P.; Merlin, O.; Gentine, P.; Or, D. Soil Texture Effects on Surface Resistance to Bare-Soil Evaporation. Geophys. Res. Lett. 2018, 45, 10398–10405. [Google Scholar] [CrossRef]
- Srivastava, A.; Saco, P.M.; Rodriguez, J.F.; Kumari, N.; Chun, K.P.; Yetemen, O. The role of landscape morphology on soil moisture variability in semi-arid ecosystems. Hydrol. Processes 2020, 35, e13990. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44, 5804. [Google Scholar] [CrossRef] [Green Version]
- Plante, A.F.; Conant, R.T.; Stewart, C.E.; Paustian, K.; Six, J. Impact of Soil Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions. Soil Sci. Soc. Am. J. 2006, 70, 287–296. [Google Scholar] [CrossRef]
- Nh, A.; Sm, B.; Rv, C. Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture. Catena 2019, 182, 104141. [Google Scholar]
- Liao, K.; Xu, S.; Wu, J.; Zhu, Q. Spatial estimation of surface soil texture using remote sensing data (Soil physics). Soil Sci. Plant Nutr. 2013, 59, 488–500. [Google Scholar] [CrossRef]
- De Carvalho Conceição Telles, E.; de Camargo, P.B.; Martinelli, L.A.; Trumbore, S.E.; da Costa, E.S.; Santos, J.; Higuchi, N.; Oliveira, R.C. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Glob. Biogeochem. Cycles 2003, 17, 1953. [Google Scholar]
- Wang, D.-C.; Zhang, G.-L.; Pan, X.-Z.; Zhao, Y.-G.; Zhao, M.-S.; Wang, G.-F. Mapping Soil Texture of a Plain Area Using Fuzzy-c-Means Clustering Method Based on Land Surface Diurnal Temperature Difference. Pedosphere 2012, 22, 394–403. [Google Scholar] [CrossRef]
- Braud, I.; Roux, H.; Anquetin, S.; Maubourguet, M.-M.; Manus, C.; Viallet, P.; Dartus, D. The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes. J. Hydrol. 2010, 394, 162–181. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.L.; Jin, H.J.; He, R.X.; Wang, X.F.; Muskett, R.R.; Marchenko, S.S.; Romanovsky, V.E. Characteristics of Water-Heat Exchanges and Inconsistent Surface Temperature Changes at an Elevational Permafrost Site on the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2018, 123, 10057–10075. [Google Scholar] [CrossRef]
- Li, X.L.; Gao, J.; Brierley, G.; Qiao, Y.M.; Zhang, J.; Yang, Y.W. Rangeland Degradation on the Qinghai-Tibet Plateau: Implications for Rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau. Permafr. Periglac. Process. 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Poloczanska, E. The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Mu, C.; Abbott, B.W.; Norris, A.J.; Mu, M.; Fan, C.; Chen, X.; Jia, L.; Yang, R.; Zhang, T.; Wang, K.; et al. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Sci. Rev. 2020, 211, 103433. [Google Scholar] [CrossRef]
- Dickinson, R.E. Land surface processes and energy balance climate-surface albedos and Energy Balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Wu, Q.; Zhang, T.; Liu, Y.J.G.; Change, P. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob. Planet. Chang. 2010, 72, 32–38. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Ding, Y.J.; Wu, T.H.; Xiao, Y.; Du, E.J.; Liu, G.Y.; Qiao, Y. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. 2007, 112, 631. [Google Scholar] [CrossRef] [Green Version]
- Niu, F.; Cheng, G.; Ni, W.; Jin, D. Engineering-related slope failure in permafrost regions of the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2005, 42, 215–225. [Google Scholar] [CrossRef]
- Nachtergaele, F.; Velthuizen, H.V.; Verelst, L.; Batjes, N.H.; Dijkshoorn, K.; Engelen, V.; Fischer, G.; Jones, A.; Montanarela, L. The Harmonized World Soil Database. 2010. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/154132 (accessed on 29 May 2022).
- Wei, S.; Dai, Y.; Liu, B.; Ye, A.; Hua, Y.J.G. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma 2012, 171–172, 85–91. [Google Scholar]
- Padarian, J.; Minasny, B.; McBratney, A.B. Chile and the Chilean soil grid: A contribution to GlobalSoilMap. J Geoderma Regional. 2016, 9, 17–28. [Google Scholar] [CrossRef]
- Ke, H.; Yangjian, Z.; Juntao, Z.; Yaojie, L.; Jiaxing, Z.; Jing, Z. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar]
- Lin, Z.; Ping, C.L.; Yang, D.; Cheng, G.; Ding, Y.; Liu, S.J.G.; Change, P. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob. Planet. Chang. 2004, 43, 19–31. [Google Scholar]
- Wu, X.; Fang, H.; Zhao, Y.; Smoak, J.M.; Li, W.; Shi, W.; Sheng, Y.; Zhao, L.; Ding, Y. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. J. Geophys. Res. Biogeosci. 2017, 122, 1705–1717. [Google Scholar] [CrossRef]
- Gilluly, J.; Waters, A.C.; Woodford, A.O. Principles of Geology; Penguin Classics: London, UK, 1951. [Google Scholar]
- McBratney, A.B.; Santos, M.M.; Minasny, B.J.G. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. Sci. Total Environ. 2021, 754, 142030. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- LI, Z.-W.; Xin, X.-P.; Huan, T.; Fan, Y.; Chen, B.-R.; Zhang, B.-H. Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. J. Integr. Agric. 2017, 16, 286–297. [Google Scholar] [CrossRef]
- Breiman, L.J.M.l. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J.; Sensing, R. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Touw, W.G.; Bayjanov, J.R.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.; van Hijum, S.A.F.T. Data mining in the Life Sciences with Random Forest: A walk in the park or lost in the jungle? Brief. Bioinform. 2013, 14, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75, 665. [Google Scholar] [CrossRef]
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef]
- Avdeef, A. Do you know your r2? ADMET DMPK 2021, 9, 69–74. [Google Scholar] [CrossRef]
- Baumann, F.; HE, J.S.; Schmidt, K.; Kuehn, P.; Scholten, T. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Glob. Chang. Biol. 2009, 15, 3001–3017. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, L.; Fang, H.; Zhao, Y.; Smoak, J.M.; Pang, Q.; Ding, Y. Environmental controls on soil organic carbon and nitrogen stocks in the high-altitude arid western Qinghai-Tibetan Plateau permafrost region. J. Geophys. Res. Biogeosci. 2016, 121, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Ding, L. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl. Sci. Rev. 2015, 2, 417–437. [Google Scholar] [CrossRef]
- Feng, W.; Lu, H.; Yao, T.; Yu, Q. Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century. Sci. Rep. 2020, 10, 14323. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Z.; Chai, L.; Liu, S.; Montzka, C.; Liu, J.; Yang, X.; Lu, Z.; Jin, R.; Li, X. Rebuilding a microwave soil moisture product using random forest adopting AMSR-E/AMSR2 brightness temperature and SMAP over the Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 683. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Zhang, T.; Zhang, X.; Cao, B.; Peng, X.; Cao, L.; Su, H. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena 2016, 141, 85–91. [Google Scholar] [CrossRef]
- Poggio, L.; Gimona, A. 3D mapping of soil texture in Scotland. Sci. Rep. 2017, 9, 5–16. [Google Scholar] [CrossRef]
- Mulder, V.L.; Lacoste, M.; Richer-de-Forges, A.C.; Arrouays, D. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth. Sci. Total Environ. 2016, 573, 1352–1369. [Google Scholar] [CrossRef]
- Dobarco, M.R.; Orton, T.G.; Arrouays, D.; Lemercier, B.; Paroissien, J.-B.; Walter, C.; Saby, N.P. Prediction of soil texture using descriptive statistics and area-to-point kriging in Region Centre (France). Geoderma Reg. 2016, 7, 279–292. [Google Scholar] [CrossRef]
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil property and class maps of the conterminous United States at 100-meter spatial resolution. Soil Sci. Soc. Am. J. 2018, 82, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Rossel, R.V.; Chen, C.; Grundy, M.; Searle, R.; Clifford, D.; Campbell, P.J. The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil Res. 2015, 53, 845–864. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; An, S.; Inouye, D.W.; Schwartz, M.D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Chang. Biol. 2015, 21, 3635–3646. [Google Scholar] [CrossRef]
- An, S.; Chen, X.; Zhang, X.; Lang, W.; Ren, S.; Xu, L. Precipitation and minimum temperature are primary climatic controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau. Remote Sens. 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Braskerud, B. The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. J. Environ. Qual. 2001, 30, 1447–1457. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Wang, Q.; Zhao, L.; Wu, X.-D.; Yue, G.-Y.; Zou, D.-F.; Nan, Z.-T.; Liu, G.-Y.; Pang, Q.-Q.; Fang, H.-B. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. J. Mt. Sci. 2016, 13, 1035–1046. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Zhao, Z.; Zhang, J. The Qingzang movement: The major uplift of the Qinghai-Tibetan Plateau. Sci. China Earth Sci. 2015, 58, 2113–2122. [Google Scholar] [CrossRef]
Variables | Description | Resolution | Soil Forming Factors |
---|---|---|---|
Elevation | Elevation above sea level (km) | 1 km | r |
Slope | Slope gradient | 1 km | r |
Aspect | Aspect gradient | 1 km | r |
Plan | Plan curvature | 1 km | r |
Profile | Profile curvature | 1 km | r |
TWI | Topographic wetness index | 1 km | r |
TCA | Total catchment area | 1 km | r |
RSP | Relative slope position | 1 km | r |
CI | Convergence index | 1 km | r |
VD | Valley depth | 1 km | r |
CND | Channel network distance | 1 km | r |
CNB | Channel network base level | 1 km | r |
LS | Slope length and steepness factor | 1 km | r |
MAT | Annual mean temperature (°C) | 1 km | c |
MAP | Annual precipitation (mm) | 1 km | c |
NDVI | Mean NDVI during the growing season | 1 km | o, c |
QGT | Quaternary geological type | 1 km | p |
ST | Soil type | 1 km | o |
Depth (cm) | Mean (%) | SD (%) | CV | Skewness | Kurtosis |
---|---|---|---|---|---|
Clay | |||||
0–5 | 11.56 | 7.25 | 0.63 | 0.66 | 0.01 |
5–15 | 11.55 | 7.36 | 0.64 | 0.76 | 0.26 |
15–30 | 11.33 | 7.69 | 0.68 | 0.93 | 0.84 |
30–60 | 10.81 | 7.99 | 0.74 | 1.03 | 0.81 |
60–100 | 9.90 | 8.13 | 0.82 | 1.25 | 1.19 |
100–200 | 8.00 | 7.11 | 0.89 | 1.70 | 2.59 |
Silt | |||||
0–5 | 16.94 | 12.72 | 0.75 | 0.87 | −0.08 |
5–15 | 16.71 | 12.16 | 0.73 | 0.71 | −0.73 |
15–30 | 16.51 | 12.58 | 0.76 | 0.85 | −0.33 |
30–60 | 15.56 | 12.19 | 0.78 | 0.89 | −0.28 |
60–100 | 14.37 | 12.05 | 0.84 | 1.19 | 0.55 |
100–200 | 12.41 | 11.96 | 0.96 | 1.88 | 3.18 |
Sand | |||||
0–5 | 71.48 | 17.14 | 0.24 | −0.60 | −0.41 |
5–15 | 71.73 | 16.80 | 0.23 | −0.49 | −0.83 |
15–30 | 72.14 | 18.02 | 0.25 | −0.63 | −0.63 |
30–60 | 73.61 | 18.23 | 0.25 | −0.77 | −0.43 |
60–100 | 75.64 | 18.55 | 0.25 | −0.99 | 0.29 |
100–200 | 79.58 | 17.15 | 0.22 | −1.66 | 0.36 |
Depth (cm) | R2 | RMSE | MAE |
---|---|---|---|
Clay | |||
0–5 | 0.36 | 5.85 | 4.30 |
5–15 | 0.33 | 6.10 | 4.45 |
15–30 | 0.30 | 6.49 | 4.83 |
30–60 | 0.28 | 6.91 | 5.06 |
60–100 | 0.32 | 6.84 | 4.86 |
100–200 | 0.50 | 5.02 | 3.49 |
Silt | |||
0–5 | 0.49 | 9.11 | 6.46 |
5–15 | 0.50 | 8.64 | 6.49 |
15–30 | 0.47 | 9.29 | 6.87 |
30–60 | 0.44 | 9.30 | 7.02 |
60–100 | 0.49 | 8.77 | 6.19 |
100–200 | 0.57 | 8.05 | 5.43 |
Sand | |||
0–5 | 0.52 | 12.01 | 8.68 |
5–15 | 0.51 | 11.95 | 8.91 |
15–30 | 0.45 | 13.54 | 10.15 |
30–60 | 0.48 | 13.29 | 10.12 |
60–100 | 0.49 | 13.28 | 9.47 |
100–200 | 0.62 | 10.67 | 7.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wu, X.; Wu, T.; Zhao, L.; Li, R.; Li, W.; Hu, G.; Zou, D.; Ni, J.; Du, Y.; et al. Soil Texture and Its Relationship with Environmental Factors on the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 3797. https://doi.org/10.3390/rs14153797
Liu Y, Wu X, Wu T, Zhao L, Li R, Li W, Hu G, Zou D, Ni J, Du Y, et al. Soil Texture and Its Relationship with Environmental Factors on the Qinghai–Tibet Plateau. Remote Sensing. 2022; 14(15):3797. https://doi.org/10.3390/rs14153797
Chicago/Turabian StyleLiu, Yadong, Xiaodong Wu, Tonghua Wu, Lin Zhao, Ren Li, Wangping Li, Guojie Hu, Defu Zou, Jie Ni, Yizhen Du, and et al. 2022. "Soil Texture and Its Relationship with Environmental Factors on the Qinghai–Tibet Plateau" Remote Sensing 14, no. 15: 3797. https://doi.org/10.3390/rs14153797
APA StyleLiu, Y., Wu, X., Wu, T., Zhao, L., Li, R., Li, W., Hu, G., Zou, D., Ni, J., Du, Y., Wang, M., Li, Z., Wei, X., & Yan, X. (2022). Soil Texture and Its Relationship with Environmental Factors on the Qinghai–Tibet Plateau. Remote Sensing, 14(15), 3797. https://doi.org/10.3390/rs14153797