Spatiotemporal Variations in Drought and Vegetation Response in Inner Mongolia from 1982 to 2019
Abstract
:1. Introduction
2. The Study Area and Datasets
2.1. Study Area
2.2. Datasets and Processing
2.2.1. NDVI Data
2.2.2. Thematic Data
3. Methodology
3.1. Spatial Downscaling
3.2. SPEI Calculation
3.3. Trend Analysis
3.3.1. Theil–Sen Median Trend Analysis
3.3.2. Mann–Kendall Trend Test
3.4. Pearson Correlation Analysis
3.5. Wavelet Analysis
4. Results and Discussion
4.1. Accuracy Verification of the Downscaled NDVI Data
4.2. Vegetation Characteristics in Inner Mongolia from 1982 to 2019
4.2.1. Distribution of Vegetation
4.2.2. Vegetation Changes in Time and Space
4.3. Drought Characteristics in Inner Mongolia from 1982 to 2019
4.3.1. Drought Monitoring Results
4.3.2. Drought Changes in Time and Space
4.4. Response of Vegetation to Drought in Inner Mongolia from 1982 to 2019
4.4.1. Correlation between Vegetation Changes and Simultaneous Drought in Inner Mongolia
4.4.2. Relationships between Different Vegetation Types and Drought in Eastern Inner Mongolia
4.5. Anthropogenic Factors on Forestland in Eastern Inner Mongolia from 1982 to 2019
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claussen, M.; Bathiany, S.; Brovkin, V.; Kleinen, T. Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity. Nat. Geosci. 2013, 6, 954–958. [Google Scholar] [CrossRef]
- He, G.; Li, Z. Asymmetry of daytime and nighttime warming in typical climatic zones along the eastern coast of China and its influence on vegetation activities. Remote Sens. 2020, 12, 3604. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, C.; Liu, W.; Qi, Y.; Wo, X. Vegetation variation of mid-subtropical forest based on MODIS NDVI data —A case study of Jinggangshan City, Jiangxi Province. Acta Ecol. Sin. 2014, 34, 7–12. [Google Scholar] [CrossRef]
- Tollefson, J. IPCC climate report: Earth is warmer than it’s been in 125,000 years. Nature 2021, 596, 171–172. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, C.; Wang, H. Response of vegetation change to meteorological drought in Northwest China from 2001 to 2018. Sci. Geogr. Sin. 2020, 87, 85–98. [Google Scholar]
- Fang, W.; Huang, S.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Wang, L.; Guo, Y. Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China. Remote Sens. Environ. 2019, 232, 111290. [Google Scholar] [CrossRef]
- Jiang, W.; Niu, Z.; Wang, L.; Yao, R.; Gui, X.; Xiang, F.; Ji, Y. Impacts of drought and climatic factors on vegetation dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sens. 2022, 14, 930. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Liu, J.; Feng, L.; Zhao, Y. Assessing the effects of drought and "Grain for Green" Program on vegetation dynamics in China’s Loess Plateau from 2000 to 2014. Catena 2019, 175, 446–455. [Google Scholar] [CrossRef]
- Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343–352. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Kumar, T.V.L.; Paredes, F.; Elliott, S.; Ayuga, J.G. Assessment of caatinga response to drought using Meteosat-SEVIRI normalized difference vegetation index (2008–2016). ISPRS J. Photogramm. Remote Sens. 2019, 148, 235–252. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Pea-Gallardo, M.; Tomas-Burguera, M.; Domínguez-Castro, F.; Martín-Hernández, N.; Beguería, S.; Kenawy, A.E.; Noguera, I.; García, M. A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015. Nat. Hazards Earth Syst. Sci. 2019, 19, 1189–1213. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Yang, Y.; Jiang, H. Intercomparison of AVHRR GIMMS3g, Terra MODIS, and SPOT-VGT NDVI products over the Mongolian Plateau. Remote Sens. 2019, 11, 2030. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Sanchez-Lorenzo, A. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Filho, W.L.; Yin, J.; Hu, R.; Wang, J.; Yang, C.; Yin, S.; Bao, Y.; Ayal, D. Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau. J. Clean. Prod. 2018, 179, 210–216. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Schrier, G.V.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.I. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Guo, H. Determining variable weights for an optimal scaled drought condition index (OSDCI): Evaluation in central Asia. Remote Sens. Environ. 2019, 231, 111220. [Google Scholar] [CrossRef]
- Polong, F.; Chen, H.; Sun, S.; Ongoma, V. Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River Basin, Kenya. Theor. Appl. Climatol. 2019, 138, 777–792. [Google Scholar] [CrossRef]
- Mahmood-Agha, O.M.A.; Al-Aqeeli, Y.H. Analysis of the standardized precipitation evapotranspiration index over Iraq and its relationship with the Arctic Oscillation Index. Hydrol. Sci. J. 2021, 66, 278–288. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative analysis of drought indicated by the SPI and SPEI at various timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Brivio, P.A.; Bartholome, E.; Stroppiana, D.; Hoscilo, A. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS J. Photogramm. Remote Sens. 2013, 78, 26–40. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Liu, S.; Tian, Y.; Yin, Y.; An, N.; Dong, S. Temporal dynamics of vegetation NDVI and its response to drought conditions in Yunnan Province. Acta Ecol. Sin. 2016, 36, 4699–4707. [Google Scholar]
- Cai, S.; Song, X.; Hu, R.; Guo, D. Ecosystem-dependent responses of vegetation coverage on the Tibetan Plateau to climate factors and their lag periods. ISPRS Int. J. Geo-Inf. 2021, 10, 394. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Liu, M. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Zhong, S.; Sun, Z.; Di, L. Characteristics of vegetation response to drought in the CONUS based on long-term remote sensing and meteorological data. Ecol. Indic. 2021, 127, 107767. [Google Scholar] [CrossRef]
- Zuo, D.; Han, Y.; Xu, Z.; Li, P.; Yang, H. Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. J. Hydrol. 2021, 600, 126532. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Kocaaslan, S.; Musaoğlu, N.; Karamzadeh, S. Evaluating drought events by time-frequency analysis: A case study in aegean region of Turkey. IEEE Access 2021, 9, 125032–125041. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Liu, Q.; Cui, X.; Chen, X.; Chen, J. Estimating the age and population structure of encroaching shrubs in arid/semiarid grasslands using high spatial resolution remote sensing imagery. Remote Sens. Environ. 2018, 216, 572–585. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T.; Kang, W.; Guo, Z.; Zhang, X. Vegetation change and its response to drought in InnerMongolia of northern China from 1998 to 2013. Sci. Cold Arid. Reg. 2019, 11, 13. [Google Scholar] [CrossRef]
- Yang, S.; Yang, H. Drought evolution and vegetation response in Inner Mongolia from 1982 to 2013. J. Nat. Disasters 2019, 28, 175–183. [Google Scholar]
- Gu, X.; Guo, E.; Yin, S.; Wang, Y.; Na, R.; Wan, Z. Assessment of the cumulative and lagging effects of drought on vegetation grouth in Inner Mongolia. Acta Agrestia Sin. 2021, 29, 1301–1310. [Google Scholar]
- Qiu, B. Professor Zhu Kezhen’s contribution to climate regionalization of China. Sci. Geogr. Sin. 1990, 10, 7. [Google Scholar]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Huth, R. Statistical downscaling of daily temperature in central Europe. J. Clim. 2002, 15, 1731–1742. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, Q.; Zhang, J.; Tang, X.; Peng, Z.; Lin, L.; Yang, J. Spatial-temporal changes of NDVI and its influence factors in Guangxi, China during 1982–2016. Mt. Res. 2020, 38, 520–531. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Fergus, R.; Borja, L. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–89. [Google Scholar] [CrossRef]
- Sen, K.P. Estimates of the regression coefficient based on kendall’s tau. Publ. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Ned. Akad. Wet. Serise A 1950, 12, 386–392. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The mann–kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Shao, Y.; Taff, G.N.; Ren, J.; Campbell, J.B. Characterizing major agricultural land change trends in the Western Corn Belt. ISPRS J. Photogramm. Remote Sens. 2016, 122, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.K.; Kern, Z. Wavelet analysis of low-frequency variability in oak tree-ring chronologies from east Central Europe. Open Geosci. 2016, 8, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Gao, P.; Su, T. The schwabe and gleissberg periods in the wolf sunspot numbers and the group sunspot numbers. Sol. Phys. 2005, 229, 181–198. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Guo, E. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901–2014 using Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [Google Scholar] [CrossRef]
- An, Q.; He, H.; Nie, Q.; Cui, Y.; You, J. Spatial and temporal variations of drought in Inner Mongolia, China. Water 2020, 12, 1715. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, T.; Yi, G.; Wei, P.; Yang, D. Remote sensing monitoring and analysis of influencing factors of drought in Inner Mongolia growing season since 2000. J. Nat. Resour. 2021, 36, 459–475. [Google Scholar] [CrossRef]
- Mu, S.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010. Acta Geogr. Sin. 2012, 67, 1255–1268. [Google Scholar]
- Chansaengkrachang, K.; Luadsong, A.; Aschariyaphotha, N. A study of the time lags of the Indian Ocean Dipole and rainfall over Thailand by using the cross wavelet analysis. Arab. J. Sci. Eng. 2015, 40, 215–225. [Google Scholar] [CrossRef]
- Liu, Y. Impacts of vegetation on drought trends. Chin. J. Atmos. Sci. 2016, 40, 142–156. [Google Scholar]
- Jones, J.A.; Creed, I.F.; Hatcher, K.L.; Warren, R.J. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. Bioscience 2012, 62, 390–404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.; Gao, W.; Li, H. Dynamic changes of forest vegetation carbon storage and the characteristics of carbon sink (source) in the Natural Forest Protection Project region for the past 20 years. Acta Ecol. Sin. 2021, 41, 5093–5105. [Google Scholar]
- Tong, S.; Zhang, J.; Bao, Y. Spatial and temporal variations of vegetation cover and the relationships with climate factors in Inner Mongolia based on GIMMS NDVI3g data. J. Arid. Land 2017, 9, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Guo, P.; Yan, X.; Zhao, T. Dynamics of vegetation cover and its relationship with climate change and human activities in Inner Mongolia. J. Nat. Resour. 2010, 25, 407–414. [Google Scholar] [CrossRef]
- Shamsudeen, M.; Padmanaban, R.; Cabral, P.; Morgado, P. Spatio-temporal analysis of the impact of landscape changes on vegetation and land surface temperature over Tamil Nadu. Earth 2022, 3, 614–638. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | SPEI |
---|---|
No drought | >−0.5 |
Mild drought | −0.5~−1 |
Moderate drought | −1~−1.5 |
Severe drought | −1.5~−2 |
Extreme drought | <−2 |
NDVI | Grade |
---|---|
NDVI > 0.6 | High vegetation coverage |
0.3 < NDVI < 0.6 | Medium vegetation coverage |
0.1 < NDVI < 0.3 | Low vegetation coverage |
NDVI < 0.1 | No vegetation coverage |
β | Z Value | NDVI Change Trend | Proportion of the Study Area (%) |
---|---|---|---|
β > 0 | |Z| > 1.96 | Significant rise (obvious improvement) | 45.1 |
β > 0 | |Z| ≤ 1.96 | No significant rise (slight improvement) | 37.3 |
β < 0 | |Z| ≤ 1.96 | No significant decline (slight degradation) | 16.0 |
β < 0 | |Z| > 1.96 | Significant decline (obvious degradation) | 1.6 |
NDVI Change Trend | Proportion of the Study Area (%) | |||
---|---|---|---|---|
Spring | Summer | Autumn | Winter | |
Significant rise (obvious improvement) | 8.1 | 45.7 | 27.2 | 3.5 |
No significant rise (slight improvement) | 17.0 | 31.0 | 30.9 | 12.6 |
No significant decline (slight degradation) | 29.9 | 18.9 | 32.9 | 39.9 |
Significant decline (obvious degradation) | 45.0 | 4.4 | 9.0 | 44.0 |
r | p Value | Classification |
---|---|---|
r > 0 | p < 0.05 | Significant positive correlation |
r > 0 | p ≥ 0.05 | No significant positive correlation |
r < 0 | p ≥ 0.05 | No significant negative correlation |
r < 0 | p < 0.05 | Significant negative correlation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Zhu, L.; Chen, Y.; Cao, X.; Yu, H. Spatiotemporal Variations in Drought and Vegetation Response in Inner Mongolia from 1982 to 2019. Remote Sens. 2022, 14, 3803. https://doi.org/10.3390/rs14153803
Wei Y, Zhu L, Chen Y, Cao X, Yu H. Spatiotemporal Variations in Drought and Vegetation Response in Inner Mongolia from 1982 to 2019. Remote Sensing. 2022; 14(15):3803. https://doi.org/10.3390/rs14153803
Chicago/Turabian StyleWei, Yujiao, Lin Zhu, Yun Chen, Xinyu Cao, and Huilin Yu. 2022. "Spatiotemporal Variations in Drought and Vegetation Response in Inner Mongolia from 1982 to 2019" Remote Sensing 14, no. 15: 3803. https://doi.org/10.3390/rs14153803
APA StyleWei, Y., Zhu, L., Chen, Y., Cao, X., & Yu, H. (2022). Spatiotemporal Variations in Drought and Vegetation Response in Inner Mongolia from 1982 to 2019. Remote Sensing, 14(15), 3803. https://doi.org/10.3390/rs14153803