A Novel Sparse Bayesian Space-Time Adaptive Processing Algorithm to Mitigate Off-Grid Effects
Abstract
:1. Introduction
2. Signal Model
3. Off-Grid Problems
4. The Proposed Algorithm to Mitigate Off-Grid Effects
4.1. Construction of the Dictionary
4.2. Estimation of the Clutter Subspace
4.3. Fast Computation of
4.4. Calculation of the STAP Filter Weight Vector
Algorithm 1. Pseudocode for the proposed algorithm. |
Step 1: Input: the data X, . Step 2: Initialize: , , and , . |
Step 3: While not converged do Obtain all by (28), and exploit (31) to find -th hyper-parameter which needs to be updated in the current iteration. If and , , and . If and , , and replace with . If and , delete from , and delete from . end Update referring to Appendix A. end while Step 4: Estimate the CNCM by (46) Step 5: Compute the space-time adaptive weight using (47). Step 6: The output of the space-time filter is . |
5. Analysis of Complexity, Storage and Convergence
5.1. Complexity Analysis
5.2. Storage Analysis
5.3. Convergence Analysis
6. Performance Assessment
6.1. Comparison of Clutter Spectrums Estimated by SR-STAP Algorithms
- (i)
- A side-looking radar without off-grid problems
- (ii)
- A side-looking radar with off-grid problems
- (iii)
- A forward-looking radar.
6.2. Comparison of IF Curves with SR-STAP Algorithms
- (i)
- A side-looking radar without off-grid problems
- (ii)
- A side-looking radar with off-grid problems
- (iii)
- A forward-looking radar
6.3. Comparison of Running Time with SR-STAP Algorithms
- (i)
- A side-looking radar without off-grid problems
Algorithm | The Average Running Time (s) |
---|---|
M-FOCUSS | 1.05 |
M-SBL | 26.32 |
the proposed algorithm | 0.88 |
- (ii)
- A side-looking radar with off-grid problems
Algorithm | The Average Running Time (s) | ||
---|---|---|---|
M-FOCUSS | 1.13 | 72.23 | |
M-SBL | 29.79 | ||
the proposed algorithm | 1.06 | 3.36 | 12.14 |
- (iii)
- A forward-looking radar
Algorithm | The Average Running Time (s) | ||
---|---|---|---|
M-FOCUSS | 1.02 | 64.14 | |
M-SBL | 30.62 | ||
the proposed algorithm | 1.05 | 4.03 | 12.94 |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- When ,
- When ,
- When ,
References
- Ward, J. Space-Time Adaptive Processing for Airborne Radar; Technical Report; MIT Lincoln Laboratory: Lexington, KY, USA, 1998. [Google Scholar]
- Reed, I.S.; Mallet, J.D.; Brennan, L.E. Rapid convergence rate in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 1974, 10, 853–863. [Google Scholar] [CrossRef]
- Donoho, D.L.; Elad, M.; Temlyakov, V.N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 2006, 52, 6–18. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, H.; Li, G.; Meng, H.D.; Wang, X.Q. A novel STAP algorithm using sparse recovery technique. IEEE Int. Geosci. Remote Sens. Symp. 2009, 1, 3761–3764. [Google Scholar]
- Yang, Z.C.; Li, X.; Wang, H.Q.; Jiang, W.D. On clutter sparsity analysis in space-time adaptive processing airborne radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1214–1218. [Google Scholar] [CrossRef]
- Sen, S. Low-rank matrix decomposition and spatial-temporal sparse recovery for STAP radar. IEEE J. Sel. Top. Signal Process. 2015, 9, 1510–1523. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Liu, W.; de Lamare, R.C. Reduced-dimension space-time adaptive processing with sparse constraints on beam-Doppler selection. Signal Process. 2019, 157, 78–87. [Google Scholar] [CrossRef]
- Zhang, W.; An, R.; He, N.; He, Z.; Li, H. Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 785–795. [Google Scholar] [CrossRef]
- Liu, C.; Wang, T.; Zhang, S.G.; Ren, B. Clutter suppression based on iterative reweighted methods with multiple measurement vectors for airborne radar. IET Radar Sonar Navig. 2022, 16, 1–14. [Google Scholar] [CrossRef]
- Candes, M.; Wakin, M.; Boyd, S. Enhancing sparsity by reweighted minimization. J. Fourier Anal. Appl. 2008, 5, 877–905. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. 2001, 1, 211–244. [Google Scholar]
- Wipf, D.P.; Rao, B.D. Sparse Bayesian learning for basis selection. IEEE Trans. Signal Process. 2004, 52, 2153–2164. [Google Scholar] [CrossRef]
- Wipf, D.P.; Rao, B.D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Process. 2007, 55, 3704–3716. [Google Scholar] [CrossRef]
- Tipping, M.E.; Faul, A.C. Fast marginal likelihood maximization for sparse Bayesian models. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA, 3–6 January 2003; Volume 1, pp. 276–283. [Google Scholar]
- Ji, S.H.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Ji, S.H.; Dunson, D.; Carin, L. Multi-task compressive sensing. IEEE Trans. Signal Process. 2009, 57, 92–106. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 2010, 19, 53–63. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zhang, Y.M.; Amin, M.G.; Himed, B. Complex multitask Bayesian compressive sensing. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014. [Google Scholar]
- Serra, J.G.; Testa, M.; Katsaggelos, A.K. Bayesian K-SVD using fast variational inference. IEEE Trans. Image Process. 2017, 26, 3344–3359. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Dai, W.; Liu, Y.M.; Wang, X.Q. Group sparse Bayesian learning via exact and fast marginal likelihood maximization. IEEE Trans. Signal Process. 2017, 65, 2741–2753. [Google Scholar] [CrossRef]
- Liu, C.; Wang, T.; Zhang, S.G.; Ren, B. A fast space-time adaptive processing algorithm based on sparse Bayesian learning for airborne radar. Sensors 2022, 22, 2664. [Google Scholar] [CrossRef]
- Duan, K.Q.; Wang, Z.T.; Xie, W.C.; Chen, H.; Wang, Y.L. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Process. 2017, 11, 544–553. [Google Scholar] [CrossRef]
- Wang, Z.T.; Xie, W.C.; Duan, K.Q. Clutter suppression algorithm base on fast converging sparse Bayesian learning for airborne radar. Signal Process. 2017, 130, 159–168. [Google Scholar] [CrossRef]
- Yang, X.P.; Sun, Y.Z.; Yang, J.; Long, T.; Sarkar, T.K. Discrete Interference suppression method based on robust sparse Bayesian learning for STAP. IEEE Access 2019, 10, 26740–26751. [Google Scholar] [CrossRef]
- Duan, K.Q.; Liu, W.J.; Duan, G.Q.; Wang, Y.L. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP. IET Radar Sonar Navig. 2018, 12, 557–564. [Google Scholar] [CrossRef]
- You, K.T.; Guo, W.B.; Liu, Y.L.; Wang, W.B.; Sun, Z. Grid evolution: Joint dictionary learning and sparse Bayesian recovery for multiple off-grid targets localization. IEEE Commun. Lett. 2018, 22, 2068–2071. [Google Scholar] [CrossRef]
- Dai, J.S.; Bao, X.; Xu, W.C.; Chang, C.Q. Root sparse Bayesian learning for off-grid DOA estimation. IEEE Signal Process. Lett. 2017, 24, 46–50. [Google Scholar] [CrossRef]
- Fang, J.; Wang, F.Y.; Shen, Y.N.; Li, H.B.; Blum, R.S. Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach. IEEE Trans. Signal Process. 2016, 64, 4649–4662. [Google Scholar] [CrossRef]
- Fang, J.; Shen, Y.N.; Li, H.B.; Li, S.Q. Super-resolution compressed sensing: An iterative reweighted algorithm for joint parameter learning and sparse signal recovery. IEEE Signal Process. Lett. 2014, 21, 761–766. [Google Scholar]
- Li, Z.H.; Zhang, Y.S.; He, X.Y.; Guo, Y.D. Low-complexity off-grid STAP algorithm based on local search clutter subspace estimation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1862–1865. [Google Scholar] [CrossRef]
- Yuan, H.D.; Xu, H.; Duan, K.Q.; Xie, W.C.; Liu, W.J.; Wang, Y.L. Sparse Bayesian learning-based space-time adaptive processing with off-grid self-calibration for airborne radar. IEEE Access 2018, 6, 47296–47307. [Google Scholar] [CrossRef]
- Wipf, D.; Nagarajan, S. A new view of automatic relevance determination. In Advances in Neural Information Processing Systems 20; MIT Press: New York, NY, USA, 2008. [Google Scholar]
Algorithm | Computational Complexity |
---|---|
M-FOCUSS | |
M-SBL | |
the proposed algorithm |
Parameters | Symbols | Value |
---|---|---|
Distance between elements | 0.15 m | |
Wavelength | 0.3 m | |
Platform height | 9000 m | |
Number of pulses | 8 | |
Number of channels | 8 | |
Pulse repetition frequency | 2000 Hz | |
Range sampling frequency | 2.5 MHz | |
Clutter to noise ratio | 40 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, T.; Liu, K.; Zhang, X. A Novel Sparse Bayesian Space-Time Adaptive Processing Algorithm to Mitigate Off-Grid Effects. Remote Sens. 2022, 14, 3906. https://doi.org/10.3390/rs14163906
Liu C, Wang T, Liu K, Zhang X. A Novel Sparse Bayesian Space-Time Adaptive Processing Algorithm to Mitigate Off-Grid Effects. Remote Sensing. 2022; 14(16):3906. https://doi.org/10.3390/rs14163906
Chicago/Turabian StyleLiu, Cheng, Tong Wang, Kun Liu, and Xinying Zhang. 2022. "A Novel Sparse Bayesian Space-Time Adaptive Processing Algorithm to Mitigate Off-Grid Effects" Remote Sensing 14, no. 16: 3906. https://doi.org/10.3390/rs14163906
APA StyleLiu, C., Wang, T., Liu, K., & Zhang, X. (2022). A Novel Sparse Bayesian Space-Time Adaptive Processing Algorithm to Mitigate Off-Grid Effects. Remote Sensing, 14(16), 3906. https://doi.org/10.3390/rs14163906