Performance Evaluation and Requirement Analysis for Chronometric Leveling with High-Accuracy Optical Clocks
Abstract
:1. Introduction
2. Principle of Chronometric Leveling
3. Error Sources of Chronometric Leveling
3.1. Measurement Systematic Error of Optical Clock
3.2. Frequency Statistical Error of Optical Clock
3.3. Transmission Path Error of Optical Fiber
4. High-Accuracy Clocks and Test
5. Performance Evaluation and Requirement Analysis
5.1. Clocks and OFFT Systems
5.2. Performance Evaluation
5.3. Requirement Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, L. Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System. J. Geod. Sci. 2012, 2, 325–342. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Denker, H.; Ludger, T.; Voigt, C.; Weyers, S.; Ekkehard, P.; Helen, S.; Margolis, D.P.; Wolf, P.; Petit, P. Geodetic methods to determine the relativistic redshift at the level of 10 $$^{-18}$$—18 in the context of international timescales: A review and practical results. J. Geod. 2017, 92, 487–516. [Google Scholar] [CrossRef] [Green Version]
- Drewes, H.; Adam, J.; Rozsa, S. The Geodesist’s Handbook 2016. J. Geod. 2016, 90, 907–1205. [Google Scholar] [CrossRef]
- Sánchez, L.; Sideris, M.G. Vertical datum unification for the international height reference system (IHRS). Geophys. J. Int. 2017, 209, 570–586. [Google Scholar] [CrossRef]
- Thompson, K.; Huang, J.; Véronneau, M.; Wright, D.; Lu, Y. Mean surface topography of the northwest Atlantic: Comparison of estimates based on satellite, terrestrial gravity, and oceanographic observations. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Bao, L.; Guo, D.; Wu, L.; Li, Q.; Liu, H.; Xue, Z.; Li, Z. Estimation of Vertical Datum Parameters Using the GBVP Approach Based on the Combined Global Geopotential Models. Remote Sens. 2020, 12, 4137. [Google Scholar] [CrossRef]
- Wu, H.; Müller, J.; Lämmerzahl, C. Clock networks for height system unification: A simulation study. Geophys. J. Int. 2019, 216, 1594–1607. [Google Scholar] [CrossRef]
- Bjerhammar, A. On a relativistic geodesy. Bull. Géodésique 1985, 59, 207–220. [Google Scholar] [CrossRef]
- Vermeer, M. Chronometric Levelling; Geodeettinen Laitos, Geodetiska Institutet: Kirkkonummi, Finland, 1983. [Google Scholar]
- Einstein, A. Die Feldgleichungen der Gravitation; Sitzung der physikalische-mathematischen Klasse: Munich, Germany, 1915; Volume 25, pp. 844–847. [Google Scholar]
- Beloy, K.; Bodine, M.I. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 2021, 591, 564–569. [Google Scholar]
- Bothwell, T.; Kedar, D.; Oelker, E.M.; Robinson, J.; Bromley, S.L.; Weston, L.; Ye, J.T.; Kennedy, C. JILA SrI optical lattice clock with uncertainty of 2.0 × 10(−18). Metrologia 2019, 56, 065004. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, T.; Campbell, S.; Hutson, R.; Marti, G.; Bloom, B.; McNally, R.; Zhang, W.; Barrett, M.D.; Safronova, M.; Strouse, G.; et al. Systematic evaluation of an atomic clock at 2 × 10 (−18) total uncertainty. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ushijima, I.; Takamoto, M.; Das, M.; Ohkubo, T.; Katori, H. Cryogenic optical lattice clocks. Nat. Photonics 2015, 9, 185–189. [Google Scholar] [CrossRef]
- Brewer, S.; Chen, J.; Hankin, A.M.; Clements, E.; Chou, C.; Wineland, D.; Hume, D.; Leibrandt, D. Al-27(+) Quantum-Logic Clock with a Systematic Uncertainty below 10(−18). Phys. Rev. Lett. 2019, 123, 033201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrew, W.F.; Zhang, X.; Fasano, R.J.; Schaffer, S.A.; Beloy, K.; Nicolodi, D.; Brown, R.; Hinkley, N.; Milani, G.; Schioppo, M.; et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 2018, 564, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhang, B.; Zeng, M.; Hao, Y.; Ma, Z.; Zhang, H.; Guan, H.; Chen, Z.; Wang, M.; Gao, K. Liquid-Nitrogen-Cooled Ca+ Optical Clock with Systematic Uncertainty of 3 × 10 −18. Phys. Rev. Appl. 2022, 17, 034041. [Google Scholar] [CrossRef]
- Huntemann, N.; Sanner, C.; Lipphardt, B.; Tamm, C.; Peik, E. Single-Ion Atomic Clock with 3 × 10(−18) Systematic Uncertainty. Phys. Rev. Lett. 2016, 116, 063001. [Google Scholar] [CrossRef] [Green Version]
- Bothwell, T.; Kennedy, C.J.; Aeppli, A.; Kedar, D.; Robinson, J.M.; Oelker, E.; Staron, A.; Ye, J. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 2022, 602, 420–424. [Google Scholar] [CrossRef]
- Zheng, X.; Dolde, J.; Lochab, V.; Merriman, B.N.; Li, H.; Kolkowitz, S. Differential clock comparisons with a multiplexed optical lattice clock. Nature 2022, 602, 425–430. [Google Scholar] [CrossRef]
- Chou, C.W.; Hume, D.B.; Rosenband, T.; Wineland, D.J. Optical Clocks and Relativity. Science 2010, 329, 1630–1633. [Google Scholar] [CrossRef] [Green Version]
- Takano, T.; Takamoto, M.; Ushijima, I.; Ohmae, N.; Akatsuka, T.; Yamaguchi, A.; Kuroishi, Y.; Munekane, H.; Miyahara, Y.K.H.M.B.; Katori, H. Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photon. 2016, 10, 662–666. [Google Scholar] [CrossRef]
- Lisdat, C.; Grosche, G.; Quintin, N.; Shi, C.; Raupach, S.M.F.; Grebing, C.; Nicolodi, D.; Stefani, F.; Al-Masoudi, A.; Dörscher, S.; et al. A clock network for geodesy and fundamental science. Nat. Commun. 2016, 7, 12443. [Google Scholar] [CrossRef] [PubMed]
- Schioppo, M.; Kronjäger, J.; Silva, A.; Ilieva, R.; Paterson, J.W.; Baynham, C.F.A.; Bowden, W.; Hill, I.R.; Hobson, R.; Vianello, A.; et al. Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network. Nat. Commun. 2022, 13, 212. [Google Scholar] [CrossRef] [PubMed]
- Grotti, J.; Koller, S.; Vogt, S.; Häfner, S.; Sterr, U.; Lisdat, C.; Denker, H.; Voigt, C.; Timmen, L.; Rolland, A.; et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 2018, 14, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 2020, 14, 411–415. [Google Scholar] [CrossRef]
- Delva, P.; Denker, H.; Lion, G. Chronometric Geodesy: Methods and Applications. In Relativistic Geodesy; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–85. [Google Scholar]
- Tanaka, Y.; Katori, H. Exploring potential applications of optical lattice clocks in a plate subduction zone. J. Geodesy 2021, 95, 1–14. [Google Scholar] [CrossRef]
- Riehle, F. Optical clock networks. Nat. Photon. 2017, 11, 25–31. [Google Scholar] [CrossRef]
- Riedel, F.; Al-Masoudi, A.; Benkler, E.; Dörscher, S.; Gerginov, V.; Grebing, C.; Häfner, S.; Huntemann, N.; Lipphardt, B.; Lisdat, C.; et al. Direct comparisons of European primary and secondary frequency standards via satellite techniques. Metrologia 2020, 57, 045005. [Google Scholar] [CrossRef] [Green Version]
- Pizzocaro, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hachisu, H.; Nemitz, N.; Tsutsumi, M.; Kondo, T.; Kawai, E.; Ichikawa, R.; et al. Intercontinental comparison of optical atomic clocks through very long baseline interferometry. Nat. Phys. 2020, 17, 223–227. [Google Scholar] [CrossRef]
- Sebastian, M.; Koczwara, A.; Grosche, G. Brillouin amplification supports 1 × 10−20 uncertainty in optical frequency transfer over 1400 km of underground fiber. Phys. Rev. A 2015, 92, 021801. [Google Scholar]
- Dan, X.; Lee, W.; Stefani, F.; Lopez, O.; Amy-Klein, A.; Pottie, P. Studying the fundamental limit of optical fiber links to the 10(−21) level. Opt. Express 2018, 26, 9515–9527. [Google Scholar]
- Anthony, B.; Stefani, F.; Lopez, O.; Chardonnet, C.; Pottie, P.; Amy-Klein, A. Two-way optical frequency comparisons at 5 × 10(−21) relative stability over 100 km telecommunication network fibers. Phys. Rev. A 2014, 90, 061802. [Google Scholar]
- Liu, D.-X.; Cao, J.; Yuan, J.-B.; Cui, K.-F.; Yuan, Y.; Zhang, P.; Chao, S.-J.; Shu, H.-L.; Huang, X.-R. Laboratory demonstration of geopotential measurement using transportable optical clocks. Chin. Phys. B 2022, in press. [Google Scholar] [CrossRef]
- Galleani, L.; Sacerdote, L.; Tavella, P.; Zucca, C. A mathematical model for the atomic clock error. Metrologia 2003, 40, S257–S264. [Google Scholar] [CrossRef]
- Poli, N.; Oates, C.; Gill, P.; Tino, G. Optical atomic clocks. Riv. Del Nuovo Cim. 2013, 36, 555–624. [Google Scholar]
- Mehlstäubler, E.T.; Grosche, G.; Lisdat, C.; Schmidt, O.P.; Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 2018, 81, 064401. [Google Scholar] [CrossRef] [Green Version]
- Howe, D.A.; Schlossberger, N. Characterizing Frequency Stability Measurements Having Multiple Data Gaps. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69, 468–472. [Google Scholar] [CrossRef]
- Griggs, E.; Kursinski, E.R.; Akos, D. An investigation of GNSS atomic clock behavior at short time intervals. GPS Solut. 2013, 18, 443–452. [Google Scholar] [CrossRef]
- David, W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar]
- Riley, W.J. The Basics of Frequency Stability Analysis; Hamilton Technical Services: Beaufort, SC, USA, 2004. [Google Scholar]
- Deng, X.; Liu, J.; Jiao, D.-D.; Gao, J.; Zang, Q.; Xu, G.-J.; Dong, R.-F.; Liu, T.; Zhang, S.-G. Coherent Transfer of Optical Frequency over 112 km with Instability at the 10 −20 Level. Chin. Phys. Lett. 2016, 33, 114202. [Google Scholar] [CrossRef]
- Newbury, N.R.; Williams, P.A.; Swann, W.C. Coherent transfer of an optical carrier over 251 km. Opt. Lett. 2007, 32, 3056–3058. [Google Scholar] [CrossRef]
- Zang, Q.; Quan, H.; Zhao, K.; Zhang, X.; Deng, X.; Xue, W.; Chen, F.; Liu, T.; Dong, R.; Zhang, S. High-Precision Time-Frequency Signal Simultaneous Transfer System via a WDM-Based Fiber Link. Photonics 2021, 8, 325. [Google Scholar] [CrossRef]
- Guillou-Camargo, F.; Ménoret, V.; Cantin, E.; Lopez, O.; Quintin, N.; Camisard, E.; Salmon, V.; Le Merdy, J.-M.; Santarelli, G.; Amy-Klein, A.; et al. First industrial-grade coherent fiber link for optical frequency standard dissemination. Appl. Opt. 2018, 57, 7203–7210. [Google Scholar] [CrossRef] [PubMed]
- Terra, O.; Grosche, G.; Schnatz, H. Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. Opt. Express 2010, 18, 16102–16111. [Google Scholar] [CrossRef] [Green Version]
- Predehl, K.; Grosche, G.; Raupach, S.M.F.; Droste, S.; Terra, O.; Alnis, J.; Legero, T.; Hänsch, T.W.; Udem, T.; Holzwarth, R.; et al. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science 2012, 336, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Davila-Rodriguez, J.; Leopardi, H.; Sherman, J.A.; Fortier, T.M.; Xie, X.; Campbell, J.C.; McGrew, W.F.; Zhang, X.; Hassan, Y.S.; et al. Coherent optical clock down-conversion for microwave frequencies with 10 −18 instability. Science 2020, 368, 889–892. [Google Scholar] [CrossRef]
- Gozzard, D.R.; Howard, L.A.; Dix-Matthews, B.P.; Karpathakis, S.F.E.; Gravestock, C.T.; Schediwy, S.W. Ultrastable Free-Space Laser Links for a Global Network of Optical Atomic Clocks. Phys. Rev. Lett. 2022, 128, 020801. [Google Scholar] [CrossRef]
- Ihde, J.; Sanchez, L.; Barzaghi, R.; Drewes, H.; Foerste, C.; Gruber, T.; Liebsch, G.; Marti, U.; Pail, R.; Sideris, M. Definition and Proposed Realization of the International Height Reference System (IHRS). Surv. Geophys. 2017, 38, 549–570. [Google Scholar] [CrossRef]
- Dan, X.; Delva, P.; Lopez, O.; Amy-Klein, A.; Pottie, P. Reciprocity of propagation in optical fiber links demonstrated to 10(−21). Opt. Express 2019, 27, 36965–36975. [Google Scholar]
- Takamoto, M.; Tanaka, Y.; Katori, H. A perspective on the future of transportable optical lattice clocks. Appl. Phys. Lett. 2022, 120, 140502. [Google Scholar] [CrossRef]
- Hidetoshi, K. Optical lattice clocks and quantum metrology. Nat. Photonics 2011, 5, 203–210. [Google Scholar]
- Ruxandra, B.; Bondarescu, M.; Hetenyi, G.; Boschi, L.; Jetzer, P.; Balakrishna, J. Geophysical applicability of atomic clocks: Direct continental geoid mapping. Geophys. J. Int. 2012, 191, 78–82. [Google Scholar]
- Mihai, B.; Jetzer, P.; Houlié, N.; Hetényi, G.; Lundgren, A.; Schärer, A.; Bondarescu, R. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophys. J. Int. 2015, 202, 1770–1774. [Google Scholar]
- Lion, G.; Panet, I.; Wolf, P.; Guerlin, C.; Bize, S.; Delva, P. Determination of a high spatial resolution geopotential model using atomic clock comparisons. J. Geodesy 2017, 91, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Dirkx, D.; Kopeikin, S.M.; Lion, G.; Panet, I.; Petit, G.; Visser, P.N.A.M. High Performance Clocks and Gravity Field Determination. Space Sci. Rev. 2017, 214, 5. [Google Scholar] [CrossRef] [Green Version]
- Schröder, S.; Stellmer, S.; Kusche, J. Potential and scientific requirements of optical clock networks for validating satellite-derived time-variable gravity data. Geophys. J. Int. 2021, 226, 764–779. [Google Scholar] [CrossRef]
- Ely, T.A.; Burt, E.A.; Prestage, J.D.; Seubert, J.M.; Tjoelker, R.L. Using the Deep Space Atomic Clock for Navigation and Science. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 950–961. [Google Scholar] [CrossRef]
- Ely, T.A.; Seubert, J.; Prestage, J.; Tjoelker, R.; Burt, E. Deep Space Atomic Clock Mission Overview. In Proceedings of the AAS/AIAA, Astrodynamics Specialist Conference, Portland, ME, USA, 11–13 August 2019. [Google Scholar]
Number | Source | Clock 1 (×10−17) | Clock 2 (×10−18) | Clock 3 (×10−19) | Clock 4 (×10−19) |
---|---|---|---|---|---|
1 | Blackbody radiation | 0.92 | 2.7 | 4.2 | — |
2 | Second-order Doppler shift | 0.02 | 0.9 | — | — |
3 | Electric quadrupole shift | 0.92 | 0.4 | — | — |
4 | Servo | 0.14 | 0.4 | — | — |
5 | Background gas collisions | 0.12 | — | 2.4 | — |
6 | Zeeman shift | 0.07 | — | 3.7 | — |
7 | Total excess micromotion shifts | — | 0.2 | 5.9 | — |
8 | First-order Doppler shift | — | 0.3 | 2.2 | — |
9 | BBR coefficient | — | 0.3 | — | — |
10 | Secular motion | — | — | 2.9 | — |
11 | Clock laser Stark | — | — | 2 | — |
Total | 1.3 | 3 | 9.4 | 3 | |
Height uncertainty by one clock | 0.1192 m | 0.0275 m | 0.0086 m | 0.0028 m | |
Height uncertainty by a pair of clocks | 0.1686 m | 0.0389 m | 0.0122 m | 0.0040 m |
Clock | Frequency Statistical Error Model | Frequency Statistical Error at 106 s | Frequency Statistical Error of a Pair of Clocks at 106 s | Height Uncertainty by a Single Clock (m) | Height Uncertainty by a Pair of Clocks (m) |
---|---|---|---|---|---|
1 | 4.8 × 10−18 | 6.8 × 10−18 | 0.0440 | 0.0624 | |
2 | 3.0 × 10−18 | 4.2 × 10−18 | 0.0275 | 0.0385 | |
3 | 1.2 × 10−18 | 1.7 × 10−18 | 0.0110 | 0.0156 | |
4 | 1.0 × 10−19 | 1.4 × 10−19 | 0.0009 | 0.0013 |
System | Transmission Path Error Model | System Noise Floor | Distance (km) | Height Uncertainty (m) |
---|---|---|---|---|
A | 2 × 10−18 | 480 | 0.0183 | |
B | 4 × 10−19 | 920 | 0.0037 | |
C | 1.7 × 10−20 | 680 | 0.0002 | |
D | 2 × 10−21 | 100 | 0.00002 |
Schemes | Clock | OFFT System |
---|---|---|
1 | 1 | A |
2 | B | |
3 | C | |
4 | D | |
5 | 2 | A |
6 | B | |
7 | C | |
8 | D | |
9 | 3 | A |
10 | B | |
11 | C | |
12 | D | |
13 | 4 | A |
14 | B | |
15 | C | |
16 | D |
Schemes | Clock | Measurement Systematic Error (m) | Frequency Statistical Error (m) | Transmission Path Error (m) | Height Uncertainty (m) |
---|---|---|---|---|---|
1 | 1 | 0.1686 | 0.0624 | 0.0183 | 0.1807 |
2 | 0.0037 | 0.1798 | |||
3 | 0.0002 | 0.1798 | |||
4 | 0.00002 | 0.1798 | |||
5 | 2 | 0.0389 | 0.0385 | 0.0183 | 0.0577 |
6 | 0.0037 | 0.0549 | |||
7 | 0.0002 | 0.0547 | |||
8 | 0.00002 | 0.0547 | |||
9 | 3 | 0.0122 | 0.0156 | 0.0183 | 0.0270 |
10 | 0.0037 | 0.0201 | |||
11 | 0.0002 | 0.0198 | |||
12 | 0.00002 | 0.0198 | |||
13 | 4 | 0.0040 | 0.0013 | 0.0183 | 0.0188 |
14 | 0.0037 | 0.0056 | |||
15 | 0.0002 | 0.0042 | |||
16 | 0.00002 | 0.0042 |
Target Accuracy (cm) | Measurement Systematic Error | Frequency Statistical Error | Transmission Path Error |
---|---|---|---|
5 | 4.86 × 10−18 | 2.43 × 10−18 | 4.86 × 10−19 |
1 | 9.71 × 10−19 | 4.86 × 10−19 | 9.71 × 10−20 |
0.5 | 4.86 × 10−19 | 2.43 × 10−19 | 4.86 × 10−20 |
0.1 | 9.71 × 10−20 | 4.86 × 10−20 | 9.71 × 10−21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, C.; Liu, D.; Wu, L.; Bao, L.; Zhang, P. Performance Evaluation and Requirement Analysis for Chronometric Leveling with High-Accuracy Optical Clocks. Remote Sens. 2022, 14, 4141. https://doi.org/10.3390/rs14174141
Xiong C, Liu D, Wu L, Bao L, Zhang P. Performance Evaluation and Requirement Analysis for Chronometric Leveling with High-Accuracy Optical Clocks. Remote Sensing. 2022; 14(17):4141. https://doi.org/10.3390/rs14174141
Chicago/Turabian StyleXiong, Changliang, Daoxin Liu, Lin Wu, Lifeng Bao, and Panpan Zhang. 2022. "Performance Evaluation and Requirement Analysis for Chronometric Leveling with High-Accuracy Optical Clocks" Remote Sensing 14, no. 17: 4141. https://doi.org/10.3390/rs14174141
APA StyleXiong, C., Liu, D., Wu, L., Bao, L., & Zhang, P. (2022). Performance Evaluation and Requirement Analysis for Chronometric Leveling with High-Accuracy Optical Clocks. Remote Sensing, 14(17), 4141. https://doi.org/10.3390/rs14174141