Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Numerical Model
2.3. Spectral Methods
2.3.1. Fourier Transform
2.3.2. Wavelet Transform
2.4. Lagrangian Particle Tracking Method
3. Results
3.1. Spectral Analysis of Eddy Kinetic Energy
3.1.1. FT Analysis
3.1.2. WT Analysis
3.2. Caucasian Eddy Formation
3.3. Development of an Isolated Eddy and Its Translation along the Caucasian Coast
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayward, T.L.; Mantyla, A.W. Physical, chemical and biological structure of a coastal eddy near Cape Mendocino. J. Mar. Res. 1990, 48, 825–850. [Google Scholar] [CrossRef]
- Doglioli, A.M.; Griffa, A.; Magaldi, M.G. Numerical study of a coastal current on a steep slope in presence of a cape: The case of the Promontorio di Portofino. J. Geophys. Res. Oceans 2004, 109, C12033. [Google Scholar] [CrossRef]
- Korotenko, K.A. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: An assessment of the environmental impacts. PeerJ 2018, 6, e5448. [Google Scholar] [CrossRef]
- Lobel, P.S.; Robinson, A.R. Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep Sea Res. Part A 1986, 33, 483–500. [Google Scholar] [CrossRef]
- Murdoch, R.C. The effects of a headland eddy on surface macro-zooplankton assemblages north of Otago Peninsula, New Zealand. Estuar. Coast. Shelf Sci. 1989, 29, 361–383. [Google Scholar] [CrossRef]
- Chiswell, S.M.; Roemmich, D. The East Cape Current and two eddies: A mechanism for larval retention? N. Z. J. Mar. Freshwater Res. 1998, 32, 385–397. [Google Scholar] [CrossRef]
- Roughan, M.; Mace, A.J.; Largier, J.L.; Morgan, S.G.; Fisher, J.L.; Carter, M.L. Subsurface recirculation and larval retention in the lee of a small headland: A variation on the upwelling shadow theme. J. Geophys. Res. Oceans 2005, 110, C10027. [Google Scholar] [CrossRef]
- Sentchev, A.; Korotenko, K. Modelling distribution of flounder larvae in the eastern English Channel: Sensitivity to physical forcing and biological behaviour. Mar. Ecol. Progr. Ser. 2007, 347, 233–245. [Google Scholar] [CrossRef]
- John, M.A.; Pond, S. Tidal plume generation around a promontory: Effects on nutrient concentrations and primary productivity. Cont. Shelf Res. 1992, 12, 339–354. [Google Scholar] [CrossRef]
- Van Sebille, E.; England, M.H.; Froyland, G. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environ. Res. Lett. 2012, 7, 044040. [Google Scholar] [CrossRef]
- Lebreton, L.M.; Greer, S.D.; Borrero, J.C. Numerical modelling of floating debris in the world’s oceans. Mar. Poll. Bull. 2012, 64, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef]
- Ovchinnikov, I.M.; Titov, V.B. Anticyclonic vorticity of currents in the offshore zone of the Black Sea. Dokl. Akad. Nauk. SSSR 1990, 314, 1236–1239. [Google Scholar]
- Oguz, T.; La Violette, P.E.; Unluata, U. The upper layer circulation of the Black Sea: Its variability as inferred from hydrographic and satellite observations. J. Geophys. Res. Oceans 1992, 97, 12569–12584. [Google Scholar] [CrossRef]
- Oguz, T.; Latun, V.S.; Latif, M.A.; Vladimirov, V.V.; Sur, H.I.; Markov, A.A.; Ozsoy, E.; Kotovshchikov, B.B.; Eremeev, V.V.; Unluata, U. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 8, 1597–1612. [Google Scholar] [CrossRef]
- Sur, H.I.; Ozsoy, E.; Ilyin, Y.P.; Unluata, U. Coastal-deep ocean interactions in the Black Sea and their ecological/environmental impacts. J. Mar. Syst. 1996, 7, 293–320. [Google Scholar] [CrossRef]
- Oguz, T.; Besiktepe, S. Observations on the Rim Current structure, CIW formation and transport in the western Black Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 1733–1753. [Google Scholar] [CrossRef]
- Stanev, E.V.; Rachev, N.H. Numerical study on the planetary Rossby modes in the Black Sea. J. Mar. Sys. 1999, 21, 283–306. [Google Scholar] [CrossRef]
- Staneva, J.V.; Dietrich, D.E.; Stanev, E.V.; Bowman, M.J. Rim current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model. J. Mar. Syst. 2001, 31, 137–157. [Google Scholar] [CrossRef]
- Demyshev, S.G. A numerical model of online forecasting Black Sea currents. Izv. Atmos. Ocean. Phys. 2012, 48, 120–132. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Soloviev, D.M.; Stanichny, S.V. Remotely sensed coastal/deep-basin water exchange processes in the Black Sea surface layer. Elsevier Oceanogr. Ser. 2000, 63, 273–287. [Google Scholar]
- Zatsepin, A.G.; Ginzburg, A.I.; Kostianoy, A.G.; Kremenetskiy, V.V.; Krivosheya, V.G.; Stanichny, S.V.; Poulain, P.M. Observations of Black Sea mesoscale eddies and associated horizontal mixing. J. Geophys. Res. Oceans 2003, 108, 3246. [Google Scholar] [CrossRef]
- Korotaev, G.; Oguz, T.; Nikiforov, A.; Koblinsky, C. Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. J. Geophys. Res. Oceans 2003, 108, 3122. [Google Scholar] [CrossRef]
- Oguz, T.; Malanotte-Rizzoli, P.; Aubrey, D. Wind and thermohaline circulation of the Black Sea driven by yearly mean climatological forcing. J. Geophys. Res. Oceans 1995, 100, 6845–6863. [Google Scholar] [CrossRef]
- Demyshev, S.G.; Dymova, O.A. Analyzing intra-annual variations in the energy characteristics of circulation in the Black Sea. Izv. Atmos. Ocean. Phys. 2016, 52, 386–393. [Google Scholar] [CrossRef]
- Sur, H.I.; Ilyin, Y.P. Evolution of satellite derived mesoscale thermal patterns in the Black Sea. Progr. Oceanogr. 1997, 39, 109–151. [Google Scholar] [CrossRef]
- Oguz, T.; Deshpande, A.G.; Malanotte-Rizzoli, P. The role of mesoscale processes controlling biological variability in the Black Sea coastal waters: Inferences from SeaWIFS-derived surface chlorophyll field. Cont. Shelf Res. 2002, 22, 1477–1492. [Google Scholar] [CrossRef]
- Korotenko, K.A. Modeling processes of the protrusion of near-coastal anticyclonic eddies through the Rim Current in the Black Sea. Oceanology 2017, 57, 394–401. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Nezlin, N.P.; Soloviev, D.M.; Stanichny, S.V. Anticyclonic eddies in the northwestern Black Sea. J. Mar. Syst. 2002, 32, 91–106. [Google Scholar] [CrossRef]
- Mityagina, M.I.; Lavrova, O.Y.; Karimova, S.S. Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea. Int. J. Remote Sens. 2010, 31, 4779–4790. [Google Scholar] [CrossRef]
- Kordzadze, A.A.; Demetrashvili, D.I. Operational forecast of hydrophysical fields in the Georgian Black Sea coastal zone within the ECOOP. Ocean Sci. 2011, 7, 793–803. [Google Scholar] [CrossRef]
- Karimova, S. Eddy statistics for the Black Sea by visible and infrared remote sensing. In Remote Sensing of the Changing Oceans; Danling, T., Ed.; Springer: Berlin, Germany, 2011; pp. 61–75. [Google Scholar]
- Karimova, S. Non-stationary eddies in the Black Sea as seen by satellite infrared and visible imagery. Int. J. Rem. Sens. 2013, 34, 8503–8517. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V. Mesoscale eddies in the Black Sea from satellite altimetry data. Oceanology 2015, 55, 56–67. [Google Scholar] [CrossRef]
- Sadighrad, E.; Fach, B.A.; Arkin, S.S.; Salihoglu, B.; Husrevoglu, Y.S. Mesoscale eddies in the Black Sea: Characteristics and kinematic properties in a high-resolution ocean model. J. Mar. Syst. 2021, 223, 103613. [Google Scholar] [CrossRef]
- Rachev, N.H.; Stanev, E.V. Eddy processes in semienclosed seas: A case study for the Black Sea. J. Phys. Oceanogr. 1997, 27, 1581–1601. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Korotenko, K.A.; Galos, C.E.; Dietrich, D.E. Simulation and characterization of the Adriatic Sea mesoscale variability. J. Geophys. Res. Oceans 2007, 112, C03S14. [Google Scholar] [CrossRef]
- Aleskerova, A.; Kubryakov, A.; Stanichny, S.; Medvedeva, A.; Plotnikov, E.; Mizyuk, A.; Verzhevskaia, L. Characteristics of topographic submesoscale eddies off the Crimea coast from high-resolution satellite optical measurements. Ocean Dyn. 2021, 71, 655–677. [Google Scholar] [CrossRef]
- Pattiaratchi, C.B.; Hammond, T.M.; Collins, M.B. Mapping of tidal currents in the vicinity of an offshore sandbank, using remotely sensed imagery. Int. J. Remote Sens. 1986, 7, 1015–1029. [Google Scholar] [CrossRef]
- Farmer, D.; Pawlowicz, R.; Jiang, R. Tilting separation flows: A mechanism for intense vertical mixing in the coastal ocean. Dyn. Atmos. Oceans 2002, 36, 43–58. [Google Scholar] [CrossRef]
- McCabe, R.M.; MacCready, P.; Pawlak, G. Form drag due to flow separation at a headland. J. Phys. Oceanogr. 2006, 36, 2136–2152. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Asplin, L.; Svendsen, H. Upwelling in broad fjords. Cont. Shelf Res. 1994, 14, 1701–1721. [Google Scholar] [CrossRef]
- Boyer, D.L.; Davies, P.A.; Holland, W.R.; Biolley, F.; Honji, H. Stratified rotating flow over and around isolated three-dimensional topography. Philos. Trans. R. Soc. A 1987, 322, 213–241. [Google Scholar]
- Davies, P.A.; Besley, P.; Boyer, D.L. An experimental study of flow past a triangular cape in a linearly stratified fluid. Dyn. Atmos. Oceans 1990, 14, 497–528. [Google Scholar] [CrossRef]
- Cenedese, C.L.; Whitehead, J.A. Eddy shedding from a boundary current around a cape over a sloping bottom. J. Phys. Oceanogr. 2000, 30, 1514–1531. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C. A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res. 2007, 27, 1233–1248. [Google Scholar] [CrossRef]
- Magaldi, M.G.; Ozgokmen, T.M.; Griffa, A.; Chassignet, E.P.; Iskandarani, M.; Peters, H. Turbulent flow regimes behind a coastal cape in a stratified and rotating environment. Ocean Model. 2008, 25, 65–82. [Google Scholar] [CrossRef]
- Elkin, D.N.; Zatsepin, A.G. Laboratory investigation of the mechanism of the periodic eddy formation behind capes in a coastal sea. Oceanology 2013, 53, 24–35. [Google Scholar] [CrossRef]
- Zhurbas, V.M.; Kuzmina, N.P.; Lyzhkov, D.A. Eddy formation behind a coastal cape in a flow generated by transient longshore wind. Oceanology 2017, 57, 350–359. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Progr. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- d’Ovidio, F.; Fernandez, V.; Hernandez-Garcia, E.; Lopez, C. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 2004, 31, L17203. [Google Scholar] [CrossRef]
- Dietrich, D.E.; Lin, C.A.; Mestas-Nunez, A.; Ko, D.S. A high resolution numerical study of Gulf of Mexico fronts and eddies. Meteorol. Atmos. Phys. 1997, 64, 187–201. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Bowman, M.J.; Dietrich, D.E. High-resolution numerical model for predicting the transport and dispersal of oil spilled in the Black Sea. Terr. Atmos. Ocean. Sci. 2010, 21, 123–136. [Google Scholar] [CrossRef]
- Besiktepe, S.; Lozano, C.J.; Robinson, A.R. On the summer mesoscale variability of the Black Sea. J. Mar. Res. 2001, 59, 475–515. [Google Scholar] [CrossRef]
- Chenillat, F.; Franks, P.J.; Capet, X.; Riviere, P.; Grima, N.; Blanke, B.; Combes, V. Eddy properties in the Southern California current system. Ocean Dyn. 2018, 68, 761–777. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Baranov, V.I.; Kondrashov, A.A.; Korzh, A.O.; Kremenetskiy, V.V.; Ostrovskii, A.G.; Soloviev, D.M. Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology 2011, 51, 554–567. [Google Scholar] [CrossRef]
- Korotkina, O.A.; Zavialov, P.O.; Osadchiev, A.A. Synoptic variability of currents in the coastal waters of Sochi. Oceanology 2014, 54, 545–556. [Google Scholar] [CrossRef]
- Osadchiev, A.A. A method for quantifying freshwater discharge rates from satellite observations and Lagrangian numerical modeling of river plumes. Environ. Res. Lett. 2015, 10, 085009. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Korshenko, E.A. Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions. Ocean Sci. 2017, 13, 465–482. [Google Scholar] [CrossRef]
- Osadchiev, A.A. Small mountainous rivers generate high-frequency internal waves in coastal ocean. Sci. Rep. 2018, 8, 16609. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Sedakov, R.O. Spreading dynamics of small river plumes off the northeastern coast of the Black Sea observed by Landsat 8 and Sentinel-2. Remote Sens. Environ. 2019, 221, 522–533. [Google Scholar] [CrossRef]
- Osadchiev, A.; Barymova, A.; Sedakov, R.; Zhiba, R.; Dbar, R. Spatial structure, short-temporal variability, and dynamical features of small river plumes as observed by aerial drones: Case study of the Kodor and Bzyp river plumes. Remote Sens. 2020, 12, 3079. [Google Scholar] [CrossRef]
- Korshenko, E.A.; Zhurbas, V.M.; Osadchiev, A.A.; Belyakova, P.A. Fate of river-borne floating litter during the flooding event in the northeastern part of the Black Sea in October 2018. Mar. Poll. Bull. 2020, 160, 111678. [Google Scholar] [CrossRef] [PubMed]
- Osadchiev, A.A.; Barymova, A.A.; Sedakov, R.O.; Rybin, A.V.; Tanurkov, A.G.; Krylov, A.A.; Kremenetskiy, V.V.; Mosharov, S.A.; Polukhin, A.A.; Ulyantsev, A.S.; et al. Hydrophysical structure and current dynamics of the Kodor river plume. Oceanology 2021, 61, 1–14. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Sedakov, R.O.; Gordey, A.S.; Barymova, A.A. Internal waves as a source of concentric rings within small river plumes. Rem. Sens. 2021, 13, 4275. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Sedakov, R.O.; Barymova, A.A. Response of a small river plume on wind forcing. Front. Mar. Sci. 2021, 8, 809566. [Google Scholar] [CrossRef]
- Korotenko, K.A. Predicting the behavior of an oil spill in the Black Sea resulting from accidental offshore deepwater blowout. J. Sustain. Energy Eng. 2018, 6, 48–83. [Google Scholar] [CrossRef]
- Korotenko, K.A. Modeling mesoscale circulation of the Black Sea. Oceanology 2015, 55, 820–926. [Google Scholar] [CrossRef]
- Jaoshvili, S. The Rivers of the Black Sea; Chomeriki, I., Gigineishvili, G., Kordzadze, A., Eds.; Technical Report No. 71; European Environmental Agency: Copenhagen, Denmark, 2002.
- Gibson, M.M.; Launder, B.E. Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 1978, 86, 491–511. [Google Scholar] [CrossRef]
- Korotenko, K.A. Modeling turbulent transport of matter in the ocean surface layer. Oceanology 1992, 32, 5–13. [Google Scholar]
- Tseng, Y.-H.; Dietrich, D.E.; Ferziger, J.H. Regional circulation of the Monterey Bay region: Hydrostatic versus nonhydrostatic modeling. J. Geophys. Res. Oceans 2005, 110, C09015. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Korotenko, K.A. Mesoscale-resolving simulations of summer and winter bora events in the Adriatic Sea. J. Geophys. Res. Oceans 2007, 112, C11S91. [Google Scholar] [CrossRef]
- Ozsoy, E.; Unluata, U. Oceanography of the Black Sea: A review of some recent results. Earth Sci. Rev. 1997, 42, 231–272. [Google Scholar] [CrossRef]
- Zatsepin, A.; Kubryakov, A.; Aleskerova, A.; Elkin, D.; Kukleva, O. Physical mechanisms of submesoscale eddies generation: Evidences from laboratory modeling and satellite data in the Black Sea. Ocean Dyn. 2019, 69, 253–266. [Google Scholar] [CrossRef]
- Wortham, C.; Wunsch, C. A multidimensional spectral description of ocean variability. J. Phys. Oceanogr. 2014, 44, 944–966. [Google Scholar] [CrossRef]
- Calman, J. On the interpretation of ocean current spectra. Part 1: The kinematics of three-dimensional vector time series. J. Phys. Oceanogr. 1978, 8, 627–643. [Google Scholar] [CrossRef]
- Medvedev, I.P. Tides in the Black Sea: Observations and numerical modelling. Pure Appl. Geophys. 2018, 175, 1951–1969. [Google Scholar] [CrossRef]
- Klyuvitkin, A.A.; Ostrovskii, A.G.; Lisitzin, A.P.; Konovalov, S.K. The energy spectrum of the current velocity in the deep part of the Black Sea. Dokl. Earth Sci. 2019, 488, 1222–1226. [Google Scholar] [CrossRef]
- Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Batchelor, G. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Klinger, B.A. Gyre formation at the corner by rotating barotropic coastal flows along a slope. Dyn. Atmos. Oceans 1993, 19, 27–64. [Google Scholar] [CrossRef]
- Srinivasan, K.; McWilliams, J.C.; Molemaker, M.J.; Barkan, R. Submesoscale vortical wakes in the lee of topography. J. Phys. Oceanogr. 2019, 49, 1949–1971. [Google Scholar] [CrossRef]
- Li, Z.B.; Wang, X.H.; Hu, J.Y.; Andutta, F.P.; Liu, Z. A study on an anticyclonic-cyclonic eddy pair off Fraser Island, Australia. Front. Mar. Sci. 2020, 7, 594358. [Google Scholar] [CrossRef]
- Stramma, L.; Bange, H.W.; Czeschel, R.; Lorenzo, A.; Frank, M. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru. Biogeosciences 2013, 10, 7293–7306. [Google Scholar] [CrossRef]
- Liu, W.; Tang, J.; Lu, Y.; Xie, C.; Liu, Q.; Lee, C.F. Eulerian–Lagrangian modeling of spray gatomization with focus on vortex evolution and its interaction with cavitation. Appl. Math. Model. 2022, 107, 103–132. [Google Scholar] [CrossRef]
- Mikaelyan, A.S.; Mosharov, S.A.; Kubryakov, A.A.; Pautova, L.A.; Fedorov, A.; Chasovnikov, V.K. The impact of physical processes on taxonomic composition, distribution and growth of phytoplankton in the open Black Sea. J. Mar. Syst. 2020, 208, 103368. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Osadchiev, A.A.; Zavialov, P.O.; Kao, R.-C.; Ding, C.-F. Effects of bottom topography on dynamics of river discharges in tidal regions: Case study of twin plumes in Taiwan Strait. Ocean Sci. 2014, 10, 865–879. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Korotenko, K.A.; Zavialov, P.O.; Chiang, W.-S.; Liu, C.-C. Transport and bottom accumulation of fine river sediments under typhoon conditions and associated submarine landslides: Case study of the Peinan River, Taiwan. Nat. Hazards Earth Syst. Sci. 2016, 16, 41–54. [Google Scholar] [CrossRef]
- Zavialov, I.B.; Osadchiev, A.A.; Sedakov, R.O.; Barnier, B.; Molines, J.-M.; Belokopytov, V.N. Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait. Ocean Sci. 2020, 16, 15–30. [Google Scholar] [CrossRef]
- Nezlin, N.P.; DiGiacomo, P.M. Satellite ocean color observations of stormwater runoff plumes along the San Pedro Shelf (southern California) during 1997–2003. Cont. Shelf Res. 2005, 25, 1692–1711. [Google Scholar] [CrossRef]
- Lihan, T.; Saitoh, S.-I.; Iida, T.; Hirawake, T.; Iida, K. Satellite-measured temporal and spatial variability of the Tokachi River plume. Estuar. Coastal Shelf Sci. 2008, 78, 237–249. [Google Scholar] [CrossRef]
- Gurova, E.; Chubarenko, B. Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic. Oceanologia 2012, 54, 631–654. [Google Scholar] [CrossRef]
- He, X.; Xu, D.; Bai, Y.; Pan, D.; Chen, C.-T.A.; Chen, X.; Gong, F. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea. Cont. Shelf Res. 2016, 124, 117–124. [Google Scholar] [CrossRef]
- Osadchiev, A.A. Spreading of the Amur river plume in the Amur Liman, the Sakhalin Gulf, and the Strait of Tartary. Oceanology 2017, 57, 376–382. [Google Scholar] [CrossRef]
- Malauene, B.S.; Moloney, C.L.; Lett, C.; Roberts, M.J.; Marsac, F.; Penven, P. Impact of offshore eddies on shelf circulation and river plumes of the Sofala Bank, Mozambique Channel. J. Mar. Syst. 2018, 185, 1–12. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Asadulin, E.E.; Miroshnikov, A.Y.; Zavialov, I.B.; Dubinina, E.O.; Belyakova, P.A. Bottom sediments reveal inter-annual variability of interaction between the Ob and Yenisei plumes in the Kara Sea. Sci. Rep. 2019, 9, 18642. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Silvestrova, K.P.; Myslenkov, S.A. Wind-driven coastal upwelling near large river deltas in the Laptev and East-Siberian seas. Remote Sens. 2020, 12, 844. [Google Scholar] [CrossRef]
Day | 305 | 310 | 315 | 322 | 327 | 332 | 340 | 345 | 355 | 365 |
---|---|---|---|---|---|---|---|---|---|---|
A11 | −0.0 | −0.9 | −1.2 | −0.8 | −0.8 | −0.6 | −0.6 | −0.6 | −0.4 | −0.2 |
A12 | −1.0 | −0.6 | −0.3 | −0.4 | −0.4 | −0.80.4 | −0.2 | −0.4 | −0.5 | −0.6 |
A22 | −0.4 | −0.4 | −0.4 | −0.3 | −0.3 | −0.3 | −0.2 | −0.2 | −0.1 | −0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotenko, K.; Osadchiev, A.; Melnikov, V. Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations. Remote Sens. 2022, 14, 4149. https://doi.org/10.3390/rs14174149
Korotenko K, Osadchiev A, Melnikov V. Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations. Remote Sensing. 2022; 14(17):4149. https://doi.org/10.3390/rs14174149
Chicago/Turabian StyleKorotenko, Konstantin, Alexander Osadchiev, and Vasiliy Melnikov. 2022. "Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations" Remote Sensing 14, no. 17: 4149. https://doi.org/10.3390/rs14174149
APA StyleKorotenko, K., Osadchiev, A., & Melnikov, V. (2022). Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations. Remote Sensing, 14(17), 4149. https://doi.org/10.3390/rs14174149