Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Overview
2.2. Ground Data Acquisition and Processing
2.2.1. Yield Acquisition
2.2.2. Acquisition of Near-Surface Hyperspectral Data
2.3. Acquisition and Processing of UAV Hyperspectral Remote Sensing Data
2.4. Selection of Vegetation Indices and Red-Edge Parameters
2.5. Yield Estimation and Statistical Regression
3. Results and Analysis
3.1. Correlation between Vegetation Indices or Red-Edge Parameters and Yield
3.2. Use of Vegetation Indices or RedEedge Parameters to Estimate Yield
3.3. Yield Estimation Based on Vegetation Indices and Red-Edge Parameters and Using Partial Least Squares Regression and Artificial Neural Network Methods
4. Discussion
4.1. Estimating Yield Using Vegetation Indices or Red-Edge Parameters
4.2. Yield Estimation Using Vegetation Indices, Red-Edge Parameters, Partial Least Squares Regression, and an Artificial Neural Network
4.3. Sensors for Yield Estimation
5. Conclusions
- (1)
- The combined use of vegetation indices or red-edge parameters can facilitate the estimation of crop grain yields. The accuracy of yield estimation using a combination of vegetation indices and red-edge parameters was superior to those using vegetation indices alone;
- (2)
- Using a combination of vegetation indices and red-edge parameters, the PLSR and ANN regression techniques both can provide high-performance yield estimation, with the yield estimation ability of PLSR (RMSE = 599.63 kg/ha, NRMSE = 9.82%) superior to that of ANN (RMSE = 654.35 kg/ha, NRMSE = 10.72%).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Res. 2014, 164, 178–188. [Google Scholar]
- Noureldin, N.A.; Aboelghar, M.A.; Saudy, H.S.; Ali, A.M. Rice yield forecasting models using satellite imagery in Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 125–131. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Xu, X.; Yang, G.; Wang, J. Estimation of winter wheat biomass and yield by combining the aquacrop model and field hyperspectral data. Remote Sens. 2016, 8, 972. [Google Scholar] [CrossRef]
- Campos, M.; García, F.J.; Camps, G.; Grau, G.; Nutini, F.; Crema, A.; Boschetti, M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens. Environ. 2016, 187, 102–118. [Google Scholar]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [PubMed]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef]
- Gennaro, S.F.D.; Toscano, P.; Gatti, M.; Poni, S.; Berton, A.; Matese, A. Spectral comparison of UAV-Based hyper and multispectral cameras for precision viticulture. Remote Sens. 2022, 14, 449. [Google Scholar] [CrossRef]
- Wang, W.; Gao, X.; Cheng, Y.; Ren, Y.; Zhang, Z.; Wang, R.; Cao, J.; Geng, H. QTL mapping of leaf area index and chlorophyll content based on UAV remote sensing in wheat. Agriculture 2022, 12, 595. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, L.; Meng, R.; Zhang, F.; Lv, Z.; Xu, B.; Zeng, L.; Yu, X.; Peng, S. An improved approach to estimate ratoon rice aboveground biomass by integrating UAV-based spectral, textural and structural features. Precis. Agric. 2022, 23, 1276–1301. [Google Scholar]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Roberto, B.; Paolo, R. On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ. 1993, 45, 311–326. [Google Scholar]
- Galvão, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Wheeler, T.; Von, B.J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Du, M.M.; Noboru, N. Multi-temporal Monitoring of Wheat Growth through Correlation Analysis of Satellite Images, Unmanned Aerial Vehicle Images with Ground Variable. In Proceedings of the 5th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture AGRICONTROL, Seattle, WA, USA, 14–17 August 2016. [Google Scholar]
- Eisenbeiss, H. A Mini Unmanned Aerial Vehicle (UAV): System Overview and Image Acquisition. In Proceedings of the International Workshop on Processing and Visualization Using High-Resolution Imagery, Pitsanulok, Thailand, 18–20 November 2004. [Google Scholar]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar]
- Thomas, J.; Trout, L.; Johnson, F.; Jim, G. Remote Sensing of Canopy Cover in Horticultural Crops. Hortscience 2008, 43, 333–337. [Google Scholar]
- Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera. Remote Sens. 2018, 10, 1138. [Google Scholar] [CrossRef]
- Verger, A.; Vigneau, N.; Chéron, C.; Gilliot, J.; Comar, A.; Baret, F. Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sens. Environ. 2014, 152, 654–664. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Hatfeld, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, 117–131. [Google Scholar] [CrossRef]
- Liu, H.; Kang, R.; Ustin, S.; Zhang, L.; Fu, Q.; Sheng, L.; Sun, T. Study on the prediction of cotton yield within field scale with time series hyperspectral imagery. Spectrosc. Spectr. Anal. 2016, 36, 2585–2589. [Google Scholar]
- Wang, Y.P.; Chang, K.W.; Chen, R.K.; Jengchung, L.; Yuan, S. Large-area rice yield forecasting using satellite imageries. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 27–35. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Zhu, W.; Li, S.; Zhang, X.; Li, Y.; Sun, Z. Estimation of winter wheat yield using optimal vegetation indices from unmanned aerial vehicle remote sensing. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2018, 34, 78–86. [Google Scholar]
- Uno, Y.; Prasher, S.O.; Lacroix, R.; Goel, P.K.; Karimi, Y.; Viau, A.; Patel, R.M. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comput. Electron. Agric. 2005, 47, 149–161. [Google Scholar] [CrossRef]
- Ye, X.; Sakai, K.; He, Y. Development of citrus yield prediction model based on airborne hyperspectral imaging. Spectrosc. Spectr. Anal. 2010, 30, 1295–1300. [Google Scholar]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sens. 2018, 10, 85. [Google Scholar] [CrossRef]
- Rodriguez, J.; Duchemin, B.; Hadria, R.; Watts, C.; Garatuza, J.; Chehbouni, A.; Khabba, S.; Boulet, G.; Palacios, E.; Lahrouni, A. Wheat yield estimation using remote sensing and the STICS model in the semiarid Yaqui valley, Mexico. Agronomie 2004, 24, 295–304. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.; Zhao, C.; Wang, J.; Xu, X.; Yang, G.; Li, C.; Shen, J. Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. Eur. J. Agron. 2015, 71, 53–62. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE. Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 2014, 22, 229–242. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Casadesus, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as non-destructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Penuelas, J.; Isla, R.; Filella, I.; Araus, J. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci. 1997, 37, 198–202. [Google Scholar] [CrossRef]
- Jordan, C. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 93–114. [Google Scholar] [CrossRef]
- Feng, W.; Zhu, Y.; Yao, X.; Tian, Y.; Cao, W.; Guo, T. Monitoring nitrogen accumulation in wheat leaf with red edge characteristics parameters. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2009, 25, 194–201. [Google Scholar]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Wold, H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis; Academic Press: New York, NY, USA, 1966; pp. 1391–1420. ISBN 0471411256. [Google Scholar]
- Gurgen, A.; Topaloglu, E.; Ustaomer, D.; Yıldız, S.; Ay, N. Prediction of the colorimetric parameters and mass loss of heat-treated bamboo: Comparison of multiple linear regression and artificial neural network method. Color Res. Appl. 2019, 44, 824–833. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [PubMed]
- Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.E.; Molins, M.D.S.; Araus, J.L. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front. Plant Sci. 2017, 8, 1733. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Duan, B.; Fang, S.; Zhu, R.; Wu, X.; Ma, Y.; Peng, Y. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods 2018, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; He, B.; Yebra, M.; Yin, C.; Liao, Z.; Zhang, X.; Li, X. A radiative transfer model-based method for the estimation of grassland aboveground biomass. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 159–168. [Google Scholar] [CrossRef]
- Gao, L.; Yang, G.; Yu, H.; Xu, B.; Zhao, X.; Dong, J.; Ma, Y. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remote sensing. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 113–120. [Google Scholar]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Li, Z.; Zhou, C.; Xu, K. Mapping Winter-Wheat Biomass and Grain Yield Based on a Crop Model and UAV Remote Sensing. Int. J. Remote Sens. 2021, 42, 1577–1601. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
Name | ASD | UHD185 |
---|---|---|
Country of Origin | USA | Germany |
Field of view | 25° | 19° |
Spectral range | 350%~2500 nm | 450~950 nm |
Spectral interval | 1nm | 4 nm |
Spectral resolution | 3 nm @ 700 nm; 8.5 nm @ 1400 nm; 6.5 nm @ 2100 nm | 8 nm @ 532 nm |
Working height | 1.3 m | 50 m |
Vegetation Index or Red-Edge Parameter | Formula or Definition | Reference |
---|---|---|
EVI | 2.5 × (R800 − R670)/(R800 + 6 × R670 − 7.5 × R490 + 1) | [38] |
EVI2 | 2.5 × (R800 − R670)/(R800 + 2.4 × R670 + 1) | [39] |
MSAVI2 | 0.5 × [2 × R800 + 1 − ((2 × R800 + 1)2 – 8 × (R800 − R670))1/2] | [40] |
MSR | (R800/R670 − 1)/(R800/R670 + 1)1/2 | [40] |
MTVI1 | 1.2 × [1.2 × (R800 − R550) − 2.5 × (R670 − R550)] | [41] |
GNDVI | (R780 − R550)/(R780 + R550) | [42] |
NDVI | (R800 − R670)/(R800 + R670) | [43] |
RVI | R800/R670 | [44] |
DVI | R800 − R670 | [45] |
RDVI | (R800 − R670)/(R800 + R670)1/2 | [46] |
WBI | R900/R950 | [47] |
SAVI | (1 + L)(R800 − R670)/(R800 + R670 + L), L = 0.5 | [48] |
CIrededge | R800/R720 − 1 | [49] |
Dr | the maximum value of the first derivative spectrum of the red-edge region | [50] |
Drmin | minimum red-edge amplitude | [50] |
Dr/Drmin | red-edge amplitude/minimum amplitude value | [50] |
SDr | sum of the first-order differential of the red-edge region spectrum | [51] |
Parameter | ASD | UHD185 | |||||||
---|---|---|---|---|---|---|---|---|---|
r | |||||||||
Jointing | Flagging | Flowering | Filling | Jointing | Flagging | Flowering | Filling | ||
VI | EVI | 0.378 ** | 0.384 ** | 0.594 ** | 0.762 ** | 0.088 | 0.369 ** | 0.669 ** | 0.691 ** |
EVI2 | 0.384 ** | 0.420 ** | 0.614 ** | 0.764 ** | 0.095 | 0.392 ** | 0.679 ** | 0.698 ** | |
MSAVI2 | 0.387 ** | 0.447 ** | 0.622 ** | 0.766 ** | 0.090 | 0.409 ** | 0.681 ** | 0.700 ** | |
MSR | 0.463 ** | 0.666 ** | 0.729 ** | 0.798 ** | 0.400 ** | 0.628 ** | 0.748 ** | 0.758 ** | |
MTVI1 | 0.361 ** | 0.320 * | 0.564 ** | 0.731 ** | 0.029 | 0.284 * | 0.644 ** | 0.653 ** | |
GNDVI | 0.420 ** | 0.644 ** | 0.720 ** | 0.808 ** | 0.446 ** | 0.650 ** | 0.766 ** | 0.793 ** | |
NDVI | 0.426 ** | 0.600 ** | 0.659 ** | 0.773 ** | 0.396 ** | 0.602 ** | 0.710 ** | 0.738 ** | |
RVI | 0.466 ** | 0.674 ** | 0.740 ** | 0.795 ** | 0.391 ** | 0.631 ** | 0.751 ** | 0.750 ** | |
DVI | 0.365 ** | 0.344 * | 0.580 ** | 0.747 ** | 0.026 | 0.309 * | 0.658 ** | 0.664 ** | |
RDVI | 0.393 ** | 0.445 ** | 0.625 ** | 0.765 ** | 0.154 | 0.423 ** | 0.688 ** | 0.708 ** | |
WBI | 0.474 ** | 0.721 ** | 0.788 ** | 0.823 ** | 0.196 | 0.052 | 0.403 ** | 0.713 ** | |
SAVI | 0.387 ** | 0.433 ** | 0.618 ** | 0.763 ** | 0.112 | 0.407 ** | 0.682 ** | 0.699 ** | |
CIrededge | 0.450 ** | 0.655 ** | 0.740 ** | 0.813 ** | 0.519 ** | 0.692 ** | 0.776 ** | 0.798 ** | |
REP | Dr | 0.386 ** | 0.425 ** | 0.637 ** | 0.768 ** | 0.039 | 0.296 * | 0.652 ** | 0.692 ** |
Drmin | −0.400 ** | −0.505 ** | −0.375 ** | 0.080 | −0.418 ** | −0.733 ** | −0.141 | −0.428 ** | |
Dr/Drmin | 0.491 ** | 0.633 ** | 0.282 * | 0.236 | 0.489 ** | 0.740 ** | 0.451 ** | 0.772 ** | |
SDr | 0.359 * | 0.322 * | 0.570 ** | 0.741 ** | 0.061 | 0.269 | 0.639 ** | 0.659 ** |
Dataset | Stage | VI | R2 | RMSE (kg/ha) | NRMSE (%) |
---|---|---|---|---|---|
Modeling | Jointing | ASD-WBI | 0.17 | 1230.78 | 20.16 |
UHD185-CIrededge | 0.20 | 1207.41 | 19.78 | ||
Flagging | ASD-WBI | 0.55 | 909.29 | 14.89 | |
UHD185-CIrededge | 0.43 | 1018.15 | 16.68 | ||
Flowering | ASD-WBI | 0.56 | 898.55 | 14.72 | |
UHD185-CIrededge | 0.53 | 929.49 | 15.22 | ||
Filling | ASD-WBI | 0.65 | 795.74 | 13.03 | |
UHD185-CIrededge | 0.55 | 907.18 | 14.86 | ||
Verification | Jointing | ASD-WBI | 0.38 | 1085.48 | 20.57 |
UHD185-CIrededge | 0.47 | 998.37 | 18.92 | ||
Flagging | ASD-WBI | 0.50 | 973.33 | 18.45 | |
UHD185-CIrededge | 0.59 | 884.97 | 16.77 | ||
Flowering | ASD-WBI | 0.69 | 766.54 | 14.53 | |
UHD185-CIrededge | 0.60 | 865.26 | 16.40 | ||
Filling | ASD-WBI | 0.66 | 806.23 | 15.28 | |
UHD185-CIrededge | 0.81 | 594.45 | 11.27 |
Dataset | Stage | REP | R2 | RMSE (kg/ha) | NRMSE (%) |
---|---|---|---|---|---|
Modeling | Jointing | ASD-Dr/Drmin | 0.18 | 1224.68 | 20.06 |
UHD185-Dr/Drmin | 0.19 | 1216.27 | 19.92 | ||
Flagging | ASD-Dr/Drmin | 0.47 | 983.23 | 16.10 | |
UHD185-Dr/Drmin | 0.51 | 944.40 | 15.47 | ||
Flowering | ASD-Dr | 0.31 | 1124.46 | 18.42 | |
UHD185-Dr | 0.30 | 1127.72 | 18.47 | ||
Filling | ASD-Dr | 0.54 | 914.61 | 14.98 | |
UHD185-Dr/Drmin | 0.52 | 933.25 | 15.29 | ||
Verification | Jointing | ASD-Dr/Drmin | 0.32 | 1135.44 | 21.52 |
UHD185-Dr/Drmin | 0.31 | 1139.30 | 21.59 | ||
Flagging | ASD-Dr/Drmin | 0.33 | 1121.82 | 21.26 | |
UHD185-Dr/Drmin | 0.64 | 820.71 | 15.56 | ||
Flowering | ASD-Dr | 0.50 | 969.28 | 18.37 | |
UHD185-Dr | 0.63 | 833.46 | 15.80 | ||
Filling | ASD-Dr | 0.59 | 875.98 | 16.60 | |
UHD185- Dr/Drmin | 0.70 | 749.71 | 14.21 |
Method | Stage | Data | Modeling | Verification | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE (kg/ha) | NRMSE (%) | R2 | RMSE (kg/ha) | NRMSE (%) | |||
PLSR | Jointing | ASD-VIs | 0.41 | 1039.73 | 17.03 | 0.36 | 1303.31 | 24.70 |
ASD-VIs, REPs | 0.42 | 1031.74 | 16.90 | 0.40 | 1297.98 | 24.60 | ||
UHD185-VIs | 0.23 | 1185.50 | 19.42 | 0.33 | 1309.92 | 24.83 | ||
UHD185-VIs, REPs | 0.25 | 1168.25 | 19.13 | 0.35 | 1307.56 | 24.78 | ||
Flagging | ASD-VIs | 0.63 | 818.21 | 13.40 | 0.60 | 1066.61 | 20.22 | |
ASD-VIs, REPs | 0.66 | 782.49 | 12.82 | 0.64 | 993.55 | 18.83 | ||
UHD185-VIs | 0.49 | 965.90 | 15.82 | 0.50 | 1148.74 | 21.77 | ||
UHD185-VIs, REPs | 0.52 | 934.71 | 15.31 | 0.54 | 1098.98 | 20.83 | ||
Flowering | ASD-VIs | 0.72 | 710.06 | 11.63 | 0.70 | 812.18 | 15.39 | |
ASD-VIs, REPs | 0.76 | 660.78 | 10.82 | 0.73 | 755.17 | 14.31 | ||
UHD185-VIs | 0.69 | 754.43 | 12.36 | 0.67 | 883.24 | 16.74 | ||
UHD185-VIs, REPs | 0.74 | 683.16 | 11.19 | 0.71 | 800.57 | 15.17 | ||
Filling | ASD-VIs | 0.78 | 637.57 | 10.44 | 0.77 | 691.15 | 13.10 | |
ASD-VIs, REPs | 0.83 | 557.96 | 9.14 | 0.82 | 595.30 | 11.28 | ||
UHD185-VIs | 0.76 | 660.64 | 10.82 | 0.75 | 711.47 | 13.49 | ||
UHD185-VIs, REPs | 0.80 | 599.63 | 9.82 | 0.79 | 647.61 | 12.28 |
Method | Stage | Data | Modeling | Verification | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE (kg/ha) | NRMSE (%) | R2 | RMSE (kg/ha) | NRMSE (%) | |||
ANN | Jointing | ASD-VIs | 0.37 | 1084.96 | 17.77 | 0.34 | 1308.56 | 24.80 |
ASD-VIs, REPs | 0.39 | 1059.20 | 17.35 | 0.38 | 1300.81 | 24.66 | ||
UHD185-VIs | 0.18 | 1257.64 | 20.60 | 0.25 | 1336.93 | 25.34 | ||
UHD185-VIs, REPs | 0.20 | 1239.41 | 20.30 | 0.26 | 1334.48 | 25.29 | ||
Flagging | ASD-VIs | 0.60 | 878.95 | 14.39 | 0.59 | 1112.64 | 21.09 | |
ASD-VIs, REPs | 0.64 | 806.11 | 13.20 | 0.62 | 1032.49 | 19.57 | ||
UHD185-VIs | 0.47 | 1000.14 | 16.38 | 0.45 | 1251.76 | 23.73 | ||
UHD185-VIs, REPs | 0.50 | 958.91 | 15.71 | 0.48 | 1186.43 | 22.49 | ||
Flowering | ASD-VIs | 0.68 | 752.09 | 12.32 | 0.66 | 907.07 | 17.19 | |
ASD-VIs, REPs | 0.73 | 686.16 | 11.24 | 0.72 | 793.30 | 15.04 | ||
UHD185-VIs | 0.66 | 819.25 | 13.42 | 0.63 | 919.80 | 17.43 | ||
UHD185-VIs, REPs | 0.70 | 742.99 | 12.17 | 0.68 | 876.81 | 16.62 | ||
Filling | ASD-VIs | 0.75 | 673.79 | 11.04 | 0.74 | 735.62 | 13.94 | |
ASD-VIs, REPs | 0.79 | 613.19 | 10.04 | 0.76 | 705.42 | 13.37 | ||
UHD185-VIs | 0.72 | 728.97 | 11.94 | 0.69 | 843.72 | 15.99 | ||
UHD185-VIs, REPs | 0.77 | 654.35 | 10.72 | 0.76 | 698.56 | 13.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Tao, H.; Fan, Y.; Liu, Y.; Li, Z.; Yang, G.; Zhao, C. Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data. Remote Sens. 2022, 14, 4158. https://doi.org/10.3390/rs14174158
Feng H, Tao H, Fan Y, Liu Y, Li Z, Yang G, Zhao C. Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data. Remote Sensing. 2022; 14(17):4158. https://doi.org/10.3390/rs14174158
Chicago/Turabian StyleFeng, Haikuan, Huilin Tao, Yiguang Fan, Yang Liu, Zhenhai Li, Guijun Yang, and Chunjiang Zhao. 2022. "Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data" Remote Sensing 14, no. 17: 4158. https://doi.org/10.3390/rs14174158
APA StyleFeng, H., Tao, H., Fan, Y., Liu, Y., Li, Z., Yang, G., & Zhao, C. (2022). Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data. Remote Sensing, 14(17), 4158. https://doi.org/10.3390/rs14174158