Cloud Macro- and Microphysical Properties in Extreme Rainfall Induced by Landfalling Typhoons over China
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Basic Charaacteristics during the ERLTC Period
3.1.1. The Occurrence Location of Extreme Precipitation
3.1.2. Warm Core Structure
3.1.3. Radar Reflectivity
3.2. Cloud Macro-Physical Characteristics
3.2.1. Number of Cloud Layers
3.2.2. Cloud Thickness
3.2.3. Cloud Classification
3.3. Cloud Microphysical Characteristics
3.3.1. Ice Water Content
3.3.2. Ice Particle Number Concentration
3.3.3. Effective Radius of Ice Particle
4. Discussions
5. Conclusions
- -
- One day before the extreme rainfall occurred, the TC warm core shows the strongest which implies that the TC intensified, thus favors to the water vapor convergence, convection aggregation, and extreme rainfall occurrence [5,26]. On the occurrence day of the ERLTC, the intensity and extent of TC warm core are reduced significantly, which indicates that the intensity of TC is weakened.
- -
- The proportion of single-layer (double-layered) clouds increases (decreases) significantly on the occurrence day of the ERLTC. Moreover, the single-layer clouds are relatively thick (15–17 km) and mostly distributed in the inner core and envelop region. There are two dominant distribution intervals for the double-layer clouds, and they are distributed in all regions of TC. The height of multi-layer cloud base has a large variation range of 0–17 km and a relatively thin thickness of 0–4 km. The multi-layer clouds are mostly distributed in the envelop region and outer region of TC.
- -
- In the TC inner core, the proportion of deep convective cloud can reach 50%. In the envelop region, deep convective cloud at the height of 3–8 km and cirrus at the height of 12–14 km account for the highest proportions. In the TC outer region, cirrus around 13 km has the highest proportion. On the day of extreme rainfall, the proportions of deep convective cloud and altostratus in the TC inner core decrease significantly compared with the day before the extreme rainfall, while that of nimbus increases remarkably.
- -
- The ice water contents in the upper level in the inner core and envelop region decrease significantly on the occurrence day of the ERLTC. The ice particle number concentration in the inner core above the height of 12 km in the upper-level increases obviously, while that in the envelop region at this height decreases. The ice particle effective radii in the mid-lower levels at 5–8 km in the TC inner core and at 5–6 km in the envelop region decrease remarkably.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velden, C.; Harper, B.; Wells, F.; Beven, J.L.; Zehr, R., II; Olander, T.; Mayfield, M.; Guard, C.; Lander, M.; Edson, R.; et al. The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based Method that Has Endured for over 30 Years. Bull. Amer. Meteor. Soc. 2006, 87, 1195–1210. [Google Scholar] [CrossRef]
- Tian, X.; Zou, X. A comprehensive 4D-Var vortex initialization using a nonhydrostatic axisymmetric TC model with convection accounted for. Tellus A Dyn. Meteorol. Oceanogr. 2019, 71, 1653138. [Google Scholar] [CrossRef]
- Zou, X.; Qin, Z.; Zheng, Y. Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. Mon. Wea. Rev. 2015, 143, 2485–2505. [Google Scholar] [CrossRef]
- Duan, Y.; Wan, Q.; Huang, J.; Zhao, K.; Yu, H.; Wang, Y.; Zhao, D.; Feng, J.; Tang, J.; Chen, P.; et al. Landfalling Tropical Cyclone Research Project (LTCRP) in China. Bull. Amer. Meteor. Soc. 2019, 100, ES447–ES472. [Google Scholar] [CrossRef]
- Brennan, M.J. Tropical Cyclone Rainfall. In Proceedings of the 2019 RA-IV Workshop on Hurricane Forecasting and Warning, Miami, FL, USA, 29 April–10 May 2019. [Google Scholar]
- Khouakhi, A.; Villarini, G.; Vecchi, G.A. Contribution of Tropical Cyclones to Rainfall at the Global Scale. J. Clim. 2017, 30, 359–372. [Google Scholar] [CrossRef]
- Chen, F.; Fu, Y. Contribution of tropical cyclone rainfall at categories to total precipitation over the western North Pacific from 1998 to 2007. Sci. China Earth Sci. 2015, 58, 2015–2025. [Google Scholar] [CrossRef]
- Jiang, H.; Zipser, E.J. Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Clim. 2010, 23, 1526–1543. [Google Scholar] [CrossRef]
- Liu, M.F.; Vecchi, G.A.; Smith, J.A.; Knutson, T.R. Causes of large projected increases in hurricane precipitation rates with global warming. npj Clim. Atmos. Sci. 2019, 2, 38. [Google Scholar] [CrossRef]
- Gu, X.H.; Zhang, Q. Statistical Characteristics of Extreme Precipitation Events and Associated Mechanisms, 1st ed.; Science Press: Beijing, China, 2020; pp. 136–170. (In Chinese) [Google Scholar]
- Gao, S.Z.; Meng, Z.Y.; Zhang, F.Q.; Bosart, L.F. Observational analysis of heavy rainfall mechanisms associated with severe Tropical Storm Bilis (2006) after its landfall. Mon. Weather Rev. 2009, 137, 1881–1897. [Google Scholar] [CrossRef]
- Yang, L.; Liu, M.F.; Smith, J.A.; Tian, F.Q. Typhoon Nina and the august 1975 flood over central China. J. Hydrometeorol. 2017, 18, 451–472. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Lin, L.X.; Sha, T.Y.; Yang, G.J. Analysis of atmosphere stratification in extremely heavy rainfall event associated with severe typhoon Utor. Meteorol. Mon. 2014, 40, 1507–1512. (In Chinese) [Google Scholar]
- Zhao, D.J.; Yu, Y.B.; Chen, L.S. Impact of the Monsoonal Surge on Extreme Rainfall of Landfalling Tropical Cyclones. Adv. Atmos. Sci. 2021, 38, 771–784. [Google Scholar] [CrossRef]
- Zhao, D.J.; Chen, L.S.; Yu, Y.B. Monsoon Surges Enhance Extreme Rainfall by Maintaining the Circulation of Landfalling Tropical Cyclones and Slowing Down Their Movement. Front. Earth Sci. 2021, 9, 717447. [Google Scholar] [CrossRef]
- Zhao, D.J.; Xu, H.X.; Yu, Y.B.; Chen, L.S. Identification of synoptic patterns for extreme rainfall events associated with landfalling typhoons in China during 1960–2020. Adv. Clim. Change Res. 2022; in press. [Google Scholar] [CrossRef]
- Wei, N.; Li, Y. A modeling study of land surface process impacts on inland behavior of Typhoon Rananim (2004). Adv. Atmos. Sci. 2013, 30, 367–381. [Google Scholar] [CrossRef]
- Chien, F.C.; Kuo, H.C. On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res. 2011, 116, D05104. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, Y.; Pan, X.; Hu, Y.; Chen, S.; Li, W. Precipitation Microphysics of Tropical Cyclones over Northeast China in 2020. Remote Sens. 2022, 14, 2188. [Google Scholar] [CrossRef]
- Sun, S.; Shi, W.; Zhou, S.; Chai, R.; Chen, H.; Wang, G.; Zhou, Y.; Shen, H. Capacity of satellite-based and reanalysis precipitation products in detecting long-term trends across Mainland China. Remote Sens. 2020, 12, 2902. [Google Scholar] [CrossRef]
- Sun, S.; Wang, J.; Shi, W.; Chai, R.; Wang, G. Capacity of the PERSIANN-CDR Product in Detecting Extreme Precipitation over Huai River Basin, China. Remote Sens. 2021, 13, 1747. [Google Scholar] [CrossRef]
- Delanoë, J.; Hogan, R.J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res. 2010, 115, D00H29. [Google Scholar] [CrossRef]
- Mitrescu, C.; Miller, S.; Hawkins, J.; L’Ecuyer, T.; Turk, J.; Partain, P.T.; Stephens, G. Near-Real-Time Applications of CloudSat Data. J. Appl. Meteorol. Climatol. 2008, 47, 1982–1994. [Google Scholar] [CrossRef]
- Zhao, S.H.; Zhou, Y.Q. Research on macro-micro structures of typhoon Ewiniar using a variety of satellites. Plateau Meteorol. 2010, 29, 1254–1260. (In Chinese) [Google Scholar]
- Yan, W.; Han, D.; Zhou, X.K.; Liu, H.F.; Tang, C. Analyzing the structure characteristics of tropical cyclones based on CloudSat satellite data. Chin. J. Geophys. 2013, 56, 1809–1824. (In Chinese) [Google Scholar]
- Han, D.; Yan, W.; Ye, J.; Liu, H.F. Analyzing Cloud, Precipitation, and Thermal Structure Characteristics of Typhoons in Eastern Pacific Based on CloudSat Satellite Data. Chin. J. Atmos. Sci. 2013, 37, 691–704. (In Chinese) [Google Scholar]
- Tourville, N.; Stephens, G.; DeMaria, M.; Vane, D. Remote Sensing of Tropical Cyclones: Observations from CloudSat and A-Train Profilers. Bull. Am. Meteorol. Soc. 2015, 96, 609–622. [Google Scholar] [CrossRef]
- Shi, L.H.; Cui, L.L.; Zhao, B.K. Vertical distribution of cloud properties for typhoon eyewall and surrounding spiral cloud bands. J. Trop. Meteorol. 2015, 31, 51–62. (In Chinese) [Google Scholar]
- Gao, Y.; Fang, X. Analyses on vertical structure and microphysical features of typhoon cloud in western pacific based on CloudSat satellite data. Meteorol. Mon. 2018, 44, 597–611. (In Chinese) [Google Scholar]
- Wu, S.N.; Soden, B.J. Signatures of Tropical Cyclone Intensification in Satellite Measurements of Ice and Liquid Water Content. Mon. Weather Rev. 2017, 145, 4081–4091. [Google Scholar] [CrossRef]
- Wu, S.N.; Soden, B.J.; Alaka, G.J. Ice water content as a precursor to tropical cyclone rapid intensification. Geophys. Res. Lett. 2020, 47, e2020GL089669. [Google Scholar] [CrossRef]
- Yan, Y.; Tan, J.; Cui, L. Asymmetry of cloud vertical structures and associated radiative effects in typhoon over the northwest pacific based on CloudSat tropical cyclone dataset. Asia-Pac. J. Atmos. Sci. 2020, 56, 515–532. [Google Scholar] [CrossRef]
- Wu, S.N.; Soden, B.J.; Nolan, D.S. Examining the role of cloud radiative interactions in tropical cyclone development using satellite measurements and WRF simulations. Geophys. Res. Lett. 2021, 48, e2021GL093259. [Google Scholar] [CrossRef]
- Li, H.; Wei, X.; Min, M.; Li, B.; Nong, Z.; Chen, L. A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations. Remote Sens. 2022, 14, 2417. [Google Scholar] [CrossRef]
- Bedka, K.M.; Dworak, R.; Brunner, J.; Feltz, W. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations. J. Appl. Meteorol. Climatol. 2012, 51, 1811–1822. [Google Scholar] [CrossRef]
- Ren, F.M.; Wang, Y.M.; Wang, X.L.; Li, W.J. Estimating tropical cyclone precipitation from station observations. Adv. Atmos. Sci. 2007, 24, 700–711. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.J. Climatology of tropical cyclone extreme rainfall over China from 1960 to 2019. Adv. Atmos. Sci. 2022, 39, 320–332. [Google Scholar] [CrossRef]
- Meng, Z.Y.; Zhang, F.; Luo, D.; Tan, Z.; Fang, J.; Sun, J.; Shen, X.; Zhang, Y.; Wang, S.; Han, W. Review of Chinese atmospheric science research over the past 70 years: Synoptic meteorology. Sci. China Earth Sci. 2019, 62, 1946–1991. [Google Scholar] [CrossRef]
- Yang, S.; Zou, X.; Ray, P.S. Comparison of TC Temperature and Water Vapor Climatologies between the Atlantic and Pacific Oceans from GPS RO Observations. J. Clim. 2018, 31, 8557–8571. [Google Scholar] [CrossRef]
- Niu, Z.; Zou, X.; Huang, W. Typhoon Warm-Core Structures Derived from FY-3D MWTS-2 Observations. Remote Sens. 2021, 13, 3730. [Google Scholar] [CrossRef]
- Zhao, D.J.; Yu, Y.B.; Yin, J.F.; Xu, H.X. Effects of microphysical latent heating on the rapid intensification of Typhoon Hato (2017). J. Meteorol. Res.. 2020, 34, 368–386. [Google Scholar] [CrossRef]
- Marchand, R.; Mace, G.G.; Ackerman, T.; Stephens, G. Hydrometeor Detection Using Cloudsat—An Earth-Orbiting 94-GHz Cloud Radar. J. Atmos. Ocean. Technol. 2008, 25, 519–533. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, R.; Wang, H. Comparing Occurrences and Vertical Structures of Hydrometeors between Eastern China and the Indian Monsoon Region Using CloudSat/CALIPSO Data. J. Clim. 2009, 22, 1052–1064. [Google Scholar] [CrossRef]
- Zhao, D.J.; Gao, W.H.; Xu, H.X.; Yu, Y.B.; Chen, L.S. A modeling study of cloud physical properties of extreme and non-extreme precipitation in landfalling typhoons over China. Atmos. Res. 2022, 277, 106311. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Clouds in Tropical Cyclones. Mon. Weather Rev. 2010, 138, 293–344. [Google Scholar] [CrossRef]
- Yang, S.; Zou, X. Lapse rate characteristics in ice clouds inferred from GPS RO and CloudSat observations. Atmos. Res. 2017, 197, 105–112. [Google Scholar] [CrossRef]
- Xu, H.; Duan, Y.; Xu, X. Indirect effects of binary typhoons on an extreme rainfall event in Henan province, China from 19 to 21 July 2021: 1. Ensemble-based analysis. J. Geophys. Res. Atmos. 2022, 127, e2021JD036265. [Google Scholar] [CrossRef]
- Xu, H.; Duan, Y.; Li, Y.; Wang, H. Indirect effects of binary typhoons on an extreme rainfall event in Henan province, China from 19 to 21 July 2021: 2. Numerical study. J. Geophys. Res. Atmos. 2022, 127, e2021JD036083. [Google Scholar] [CrossRef]
Products | Variables Description |
---|---|
CS_2D_TC | Storm center position, maximum wind, minimum SLP, shear, the angular distance and azimuth between the TC center and CloudSat overpass |
ECMWF-AUX | ECMWF along track auxiliary variables, such as pressure, temperature, etc. |
2B-GEOPROF | Cloud mask and radar reflectivity |
2B-CLDCLASS | Cloud classification (cirrus, altostratus, altocumulus, stratocumulus, cumulus, nimbostratus, and deep convective clouds) |
2B-GEOPROF-LIDAR | CloudSat CPR and CALIPSO Lidar cloud mask |
2B-CWC-RO | Radar-only liquid and ice water content |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Yu, Y.; Li, Y.; Xu, H.; Chen, L. Cloud Macro- and Microphysical Properties in Extreme Rainfall Induced by Landfalling Typhoons over China. Remote Sens. 2022, 14, 4200. https://doi.org/10.3390/rs14174200
Zhao D, Yu Y, Li Y, Xu H, Chen L. Cloud Macro- and Microphysical Properties in Extreme Rainfall Induced by Landfalling Typhoons over China. Remote Sensing. 2022; 14(17):4200. https://doi.org/10.3390/rs14174200
Chicago/Turabian StyleZhao, Dajun, Yubin Yu, Ying Li, Hongxiong Xu, and Lianshou Chen. 2022. "Cloud Macro- and Microphysical Properties in Extreme Rainfall Induced by Landfalling Typhoons over China" Remote Sensing 14, no. 17: 4200. https://doi.org/10.3390/rs14174200
APA StyleZhao, D., Yu, Y., Li, Y., Xu, H., & Chen, L. (2022). Cloud Macro- and Microphysical Properties in Extreme Rainfall Induced by Landfalling Typhoons over China. Remote Sensing, 14(17), 4200. https://doi.org/10.3390/rs14174200