Ten Years of VIIRS On-Orbit Geolocation Calibration and Performance
Abstract
:1. Introduction
2. Methods
3. On-Orbit Geolocation Calibration and Validation
3.1. VIIRS Initial On-Orbit Geolocation Calibration
3.2. Long-Term Monitoring and Improvements in Geolocation Performance
- “A”: Switch of VIIRS scan control electronics (SCE) from Side-B to Side-A on 22 November 2012;
- “B”: Erroneous star tracker realignment on 25 April 2013;
- “C”: 1 s time error onboard of SNPP (213 arcsec pitch error) for ~7 h on 19 August 2015;
- “D”: Star Tracker-2 reset on 22 March 2019;
- “E”, “F”: Forward processing with constant pointing correction onward from 8 February 2021, 13 January 2022, respectively.
4. On-Orbit VIIRS Geolocation Performance Improvements
4.1. Solution 1: Mask the Data
4.1.1. Loss of Synchronization from HAM to RTA
4.1.2. Sector Rotation for Lunar Calibration Maneuvers
4.1.3. Trailing Effects after Active Orbit Management Operations and Delayed Leap-Second Insertions
4.2. Solution 2: Revise the LUT
4.2.1. Switch of SNPP VIIRS SCE Side
4.2.2. SNPP Star Tracker Re-Alignment
4.2.3. SNPP Spacecraft Control Clock Error
4.2.4. Focal Length Measurement with On-Orbit Data
4.3. Solution 3: Improve the Algorithm
4.3.1. Terrain Correction for DNB Geolocation
4.3.2. VIIRS Instrument Geometric Model Update (VIGMU)
4.3.3. Kalman Filter to Improve SNPP Attitude Due to Star Tracker Degradation
4.3.4. Correction for VIIRS Temporal Pointing Variations
5. Discussion and Future Work
5.1. Future Work
5.2. Higher Sampling Rate of Attitude Data from JPSS-2+ Spacecrafts
5.3. Faster Scan Rate for VIIRS Sensors on JPSS-3 and JPSS-4
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Abbreviations Used in This Paper
Acronym | Explanation | Acronym | Explanation |
---|---|---|---|
AOA | aft-optics assembly | LRM | lunar roll (calibration) maneuver |
ADCS | attitude determination and control system | LTAN | local time at the ascending node |
AVHRR | Advanced Very-High Resolution Radiometer | LUT | look-up table |
Cal/Val | calibration and validation | M | moderate-resolution band in VIIRS |
CCD | change-coupled device | MODIS | Moderate-resolution Imaging Spectroradiometer |
CCV | correlation coefficient value | MOT | Mission Operations Team |
CDR | climate data record | N20 | NOAA-20 satellite (JPSS-1 before launch) |
CPM | control point matching | NG | Northrop Grumman |
DEM | digital elevation model | NPOESS | National Polar-Orbiting Operational Environmental Satellite System |
DNB | Day–night band (in VIIRS instrument) | NPP | NPOESS Preparatory Project |
DMSP | Defense Meteorological Satellite Program | NRT | near-real time |
DMU | drag make-up maneuver | NWP | numerical weather prediction |
ECI | Earth center inertial (reference frame) | OLS | Operational Linescan System |
EDR | environmental data record | PEATE | Land Product Evaluation and Testing Element |
EFL | effective focal length | PGE | product generation executable |
EOC | early orbit checkout | POES | Polar-Orbiting Environmental Satellite |
EOS | Earth Observing System | RMSE | root mean square error |
ESDR | Earth science data record | RPY | roll, pitch, and yaw |
EV | Earth View | RSS | root sum squared |
FPA | focal plane assembly | RTA | rotating telescope assembly |
GCP | ground control point | SC | spacecraft |
GRAVITE | Government Resources for Algorithm Verification Independent Test and Evaluation | SCE | scan control electronics |
GPS | Global Positioning System | SDR | sensor data record |
HAM | half-angle mirror | SeaWiFS | Sea-viewing Wide Field-of-view Sensor |
HSI | horizontal sampling interval | SIPS | Science Investigator-led Processing System |
I | imagery resolution band in VIIRS | SNPP | Suomi National Polar-orbiting Partnership |
IAM | inclination adjust maneuver | STAR | Satellite Applications and Research |
IDPS | Interface Data Processing Segment | SV | Space View |
J1 | JPSS-1 | UTC | Coordinated Universal Time |
JPSS | Join Polar Satellite System | VIGMU | VIIRS instrument geometric model update |
KF | Kalman filter | VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- Ardanuy, P.E.; Schueler, C.F.; Miller, S.W.; Kealy, P.M.; Cota, S.A.; Haas, M.; Welsch, C. NPOESS VIIRS Design Process. In Proceedings of the International Symposium on Optical Science and Technology—Earth Observing Systems VI, San Diego, CA, USA, 29 July–3 August 2001; Volume 4483. [Google Scholar] [CrossRef]
- Schueler, C.F.; Clement, J.E.; Ardanuy, P.E.; Welsch, C.; DeLuccia, F.; Swenson, H. NPOESS VIIRS Sensor Design Overview. In Proceedings of the International Symposium on Optical Science and Technology—Earth Observing Systems VI, San Diego, CA, USA, 29 July–3 August 2001; Volume 4483. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, X.; Wolfe, R.; DeLuccia, F.; Liu, Q.; Blonski, S.; Lin, G.; Nishihama, M.; Pogorzala, D.; Oudrari, H.; et al. Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide, Version 1.3; NOAA Technical Report; NESDIS: Silver Spring, MD, USA, 2017; p. 142. Available online: https://ncc.nesdis.noaa.gov/documents/documentation/viirs-users-guide-tech-report-142a-v1.3.pdf (accessed on 1 July 2021).
- Schueler, C.F.; Thomas, F.L.; Steven, D.M. VIIRS constant spatial-resolution advantages. Int. J. Remote Sens. 2013, 34, 5761–5777. [Google Scholar] [CrossRef]
- Murphy, R.E. Chapter 10: The NPOESS Preparatory Project. In Earth Science Satellite Remote Sensing; Volume 1, Science and Instruments; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: New York, NY, USA, 2006; ISBN 978-3-540-35606-6. [Google Scholar]
- Murphy, R.E.; Ardanuy, P.; Deluccia, F.J.; Clement, J.E.; Schueler, C.F. Chapter 11: The Visible Infrared Imaging Radiometer Suite. In Earth Science Satellite Remote Sensing; Volume 1, Science and Instruments; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: New York, NY, USA, 2006; ISBN 978-3-540-35606-6. [Google Scholar]
- Cao, C.; DeLuccia, F.; Xiong, X.; Wolfe, R.; Weng, F. Early On-orbit Performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef]
- Lin, G.; Wolfe, R.E.; Nishihama, M. NPP VIIRS Geometric Performance Status. In Proceedings of the Earth Observing Systems XVI, San Diego, CA, USA, 13 September 2011; SPIE: Bellingham, WA, USA, 2011; Volume 8153, p. 81531V. [Google Scholar] [CrossRef]
- Lin, G.; Tilton, J.C.; Wolfe, R.E.; Tewari, K.P.; Nishihama, M. SNPP VIIRS spectral bands co-registration and spatial response characterization. In Proceedings of the Earth Observing Systems XVIII, San Diego, CA, USA, 23 September 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8866, p. 88661G. [Google Scholar] [CrossRef]
- Lin, G.; Wolfe, R.E. JPSS-1 VIIRS at-launch geometric performance. In Proceedings of the Earth Observing Systems XXI, San Diego, CA, USA, 20 September 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9972, p. 99721L. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Lin, G.; Nishihama, M.; Tewari, K.P.; Tilton, J.C.; Isaacman, A.R. Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization. J. Geophys. Res. Atmos. 2013, 118, 11508–11521. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Lin, G.; Nishihama, M.; Tewari, K.P.; Montano, E. NPP VIIRS Early On-Orbit Geometric Performance. In Proceedings of the Earth Observing Systems XVII, San Diego, CA, USA, 15 October 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8510, p. 851013. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 83, 31–49. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M. Accurate MODIS global geolocation through automated ground control image matching. In Image Registration for Remote Sensing; Le Moigne, J., Netanyahu, N.S., Eastman, R.D., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 437–455. [Google Scholar] [CrossRef]
- Sikorski, R.J.; Chiang, K.F.; Nishihama, M.; Wolfe, R.E.; Xiong, X.; Schwaller, M.R. An overview of NASA NPP SDS-NICSE activities on VIIRS SDR assessment. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Lin, G.; Wolfe, R.E.; Tilton, J.C.; Zhang, P.; Dellomo, J.J.; Tan, B. JPSS-1/NOAA-20 VIIRS early on-orbit geometric performance. In Proceedings of the Earth Observing Systems XXIII, San Diego, CA, USA, 7 September 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10764, p. 107641H. [Google Scholar] [CrossRef]
- Zhang, P.; Lin, G.; Tan, B.; Wolfe, R.E. Ground control points refresh for MODIS and VIIRS geolocation monitoring. In Proceedings of the Earth Observing Systems XXVI, San Diego, CA, USA, 1 August 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11829, p. 118290Y. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance. Remote Sens. 2014, 6, 1127. [Google Scholar] [CrossRef]
- Rengarajan, R.; Sampath, A.; Storey, J.; Choate, M. Validation of Geometric Accuracy of Global Land Survey (GLS) 2000 Data. Photogramm. Eng. Remote Sens. 2015, 81, 131–141. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.; Dong, Y.; Xu, B.; Zhan, W.; Sun, C. Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms. Remote Sens. Environ. 2019, 222, 244–266. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Devadiga, S.; Ye, G.; Masuoka, E.J.; Schweiss, R.J. Evaluation of the Viirs Land Algorithms at Land Peate. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Justice, C.; Román, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T.; et al. Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res. Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C.; Bai, Y.; Blonski, S.; Schull, M.A. Assessment of the NOAA S-NPP VIIRS geolocation reprocessing improvements. Remote Sens. 2017, 9, 974. [Google Scholar] [CrossRef] [Green Version]
- Blonski, S.; Wang, W.; Cao, C. Post-launch evaluation and improvements of NOAA-20 VIIRS geolocation accuracy. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXII, Berlin, Germany, 25 September 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10785, p. 1078518. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Shao, X.; Wang, W.; Uprety, S.; Choi, T.; Blonski, S.; Gu, Y.; Bai, Y.; Lin, L.; et al. Mission-Long Recalibrated Science Quality Suomi NPP VIIRS Radiometric Dataset Using Advanced Algorithms for Time Series Studies. Remote Sens. 2021, 13, 1075. [Google Scholar] [CrossRef]
- Tilton, J.C.; Wolfe, R.E.; Lin, G.; Dellomo, J.J. On-Orbit Measurement of the Effective Focal Length and Band-to-Band Registration of Satellite-Borne Whiskbroom Imaging Sensors. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4622–4633. [Google Scholar] [CrossRef]
- NOAA NESDIS. Joint Polar Satellite System (JPSS) VIIRS Geolocation Algorithm Theoretical Basis Document (ATBD); Revision A, Effective Date: March 8, 2017. Available online: https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-004_JPSS_ATBD_VIIRS-Geolocation_A.pdf (accessed on 19 August 2021).
- NASA ESDIS. NASA Revision to the Joint Polar Satellite System (JPSS) VIIRS Geolocation Algorithm Theoretical Basis Document (ATBD); Revision A, July 2014. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/NASARevisedVIIRSGeolocationATBD2014.pdf (accessed on 9 September 2021).
- Lin, G.; Wolfe, R.E.; Dellomo, J.J.; Tan, B.; Zhang, P. SNPP and NOAA-20 VIIRS on-orbit geolocation trending and improvements. In Proceedings of the Earth Observing Systems XXV, Online Only, 16 September 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11501, p. 1150112. [Google Scholar] [CrossRef]
- Iona, G.; Butler, J.; Guenther, B.; Graziani, L.; Johnson, E.; Kennedy, B.; Kent, C.; Lambeck, R.; Waluschka, E.; Xiong, X. VIIRS on-orbit optical anomaly—Investigation, analysis, root cause determination and lessons learned. In Proceedings of the Earth Observing Systems XVII, San Diego, CA, USA, 15 October 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8510, p. 85101C. [Google Scholar] [CrossRef]
- Liao, L.B.; Weiss, S.; Mills, S.; Hauss, B. Suomi NPP VIIRS day-night band on-orbit performance. J. Geophys. Res. Atmos. 2013, 118, 12,705–12,718. [Google Scholar] [CrossRef]
- Sun, J.; Xiong, X.; Lei, N.; Li, S.; Twedt, K.; Angal, A. Ten Years of SNPP VIIRS Reflective Solar Bands On-Orbit Calibration and Performance. Remote Sens. 2021, 13, 2944. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. NOAA-20 and S-NPP VIIRS Thermal Emissive Bands On-Orbit Calibration Algorithm Update and Long-Term Performance Inter-Comparison. Remote Sens. 2021, 13, 448. [Google Scholar] [CrossRef]
- Sun, J.; Xiong, X.; Butler, J. NPP VIIRS on-orbit calibration and characterization using the moon. In Proceedings of the Earth Observing Systems XVII, San Diego, CA, USA, 15 October 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8510, p. 85101I. [Google Scholar] [CrossRef]
- Straka, W. DNB Terrain Correction Slide Fire, AZ. 2014. Available online: https://slidetodoc.com/dnb-terrain-correction-slide-fire-az-william-straka/ (accessed on 30 December 2021).
- Straka, W. DNB Terrain Correction Slide Fire, AZ Part 2. 2014. Available online: https://slidetodoc.com/dnb-terrain-correction-slide-fire-az-part-2/ (accessed on 30 December 2021).
- Hillger, D.W.; Kopp, T.J.; Lin, G.; Griffin, A.N.; Dellomo, J.; Stuhmer, D.; Chen, W.; Finley, S.; Seama, C.J. Terrain Correction for VIIRS Imagery in Preparation for JPSS-2. In Proceedings of the 2020 AMS Annual Meeting, Boston, MA, USA, 12–17 January 2020; Available online: https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/363285 (accessed on 8 April 2022).
- Hillger, D.; Line, B.; Thomas Kopp, K.; Seaman, C.; Steven Miller, S.; Louie Grasso, L.; Finley, S.; Molenar, D.; Torres, J.; Chirokova, G.; et al. 10 Years of VIIRS EDR Imagery Validation, Products, and User Impacts. Remote Sens. 2022. in preparation for submission. [Google Scholar]
- Patt, F.S.; (Science Applications International Corporation On-Site at NASA Goddard Space Flight Center, Greenbelt, MD, USA). Personal communication, 2016.
- Tilton, J.C.; (NASA Goddard Space Flight Center, Greenbelt, MD, USA); Lin, G.; (Science Systems and Applications, Inc., Lanham, MD, USA). Personal communication, 2016.
- Lin, G.; Wolfe, R.E.; Zhang, P.; Tilton, J.C.; Dellomo, J.J.; Tan, B. Thirty-six combined years of MODIS geolocation trending. Proc. SPIE Earth Obs. Syst. XXIV 2019, 11127, 1112715. [Google Scholar] [CrossRef] [Green Version]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); U.S. Geological Survey Open-File Report 2011–1073; U.S. Geological Survey: Reston, VA, USA, 2011; p. 26. [Google Scholar]
- Lin, G.; Wolfe, R.E.; Tilton, J.C. Trending of SNPP ephemeris and its implications on VIIRS geometric performance. In Proceedings of the Earth Observing Systems XXI, San Diego, CA, USA, 5 October 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9972, p. 99721K. [Google Scholar] [CrossRef] [Green Version]
Parameter (arcsec) | At-Launch 12 December 2011 | 1st Update 23 February 2012 | 2nd Update 8 April 2013 | 3rd Update 3 August 2013 | VIGMU 1 + RPY(t) 2 13 November 2020, C2 |
---|---|---|---|---|---|
inst_roll | 33.2 | −227.3 | −227.3 | −222.8 | −107.2 |
inst_pitch | 41.2 | 153.2 | 66.4 | 59.1 | 60.5 |
inst_yaw | −59.3 | 95.4 | 74.4 | 78.4 | 51.4 |
ham_alpha | 3.9 | 3.9 | 3.6 | 3.6 | −2.8 |
ham_beta | 9.5 | 9.5 | 9.5 | 9.5 | −12.3 |
ham_gamma | −6.0 | −6.0 | −6.2 | −6.2 | 6.3 |
ham_roll | 0.0 | 0.0 | 21.8 | 21.8 | −14.6 |
ham_pitch | 0.0 | 0.0 | 79.7 | 79.7 | 35.2 |
ham_yaw | 0.0 | 0.0 | 38.8 | 38.8 | −124.2 |
tele_roll | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
tele_pitch | 0.0 | 0.0 | 65.9 | 65.9 | 65.9 |
tele_yaw | 0.0 | 0.0 | 11.0 | 11.0 | 11.0 |
Parameter (arcsec) | At-Launch 18 November 2017 | 1st Update 3 January 2018 | 2nd Update 14 March 2018 | VIGMU + RPY(t) 12 July 2019, C2 | VIGMU + RPY(t) 20 January 2021, C2.1 |
---|---|---|---|---|---|
inst_roll | 0.9 | −423.5 | −422.9 | −363.6 | −363.6 |
inst_pitch | 51.1 | 300.5 | 298.5 | 295.4 | 295.4 |
inst_yaw | 80.5 | 99.4 | 111.4 | 112.6 | 112.6 |
ham_alpha | 3.9 | 3.9 | −4.4 | 9.2 | 9.2 |
ham_beta | 9.5 | 9.5 | 9.5 | −15.9 | −15.9 |
ham_gamma | −6.0 | −6.0 | 1.0 | −2.6 | −2.6 |
DNB FPA x-offset (m) | 0.00000 | −0.00380 | −0.00403 | −0.00403 | −0.00403 |
Residuals | SNPP C1 | NOAA-20 C2 | SNPP C2 | NOAA-20 C2.1 |
---|---|---|---|---|
Track mean (m) | 13 | 0 | 2 | −4 |
Scan mean (m) | 5 | 1 | 7 | 6 |
Track RMSE (m) | 59 | 55 | 59 | 57 |
Scan RMSE (m) | 52 | 49 | 48 | 47 |
Data-days (years) | 3519 (9.6) | 1341 (3.7) | 3743 (10.2) | 1565 (4.3) |
Missing days | 1 | 3 | 1 | 3 |
Daily matches | 202 | 195 | 851 | 841 |
Residuals | SNPP C1 | NOAA-20 C2 | SNPP C2 | NOAA-20 C2.1 |
---|---|---|---|---|
Radial mean (m) | 53 | 27 | 36 | 20 |
Radial stdev (m) | 114 | 87 | 91 | 86 |
Radial accuracy (3-σ, m) | 363 | 279 | 280 | 267 |
Platform | EFL (mm) | Scan Rate (rad/s) | EV Scan Angle (deg) | EV Ground Distance (km) |
---|---|---|---|---|
SNPP, JPSS-1, JPSS-2 | 1141.0 | 3.517 | ±56.04 | ±1510 |
JPSS-3, JPSS-4 | 1131.8 | 3.545 | ±56.50 | ±1550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Wolfe, R.E.; Zhang, P.; Dellomo, J.J.; Tan, B. Ten Years of VIIRS On-Orbit Geolocation Calibration and Performance. Remote Sens. 2022, 14, 4212. https://doi.org/10.3390/rs14174212
Lin G, Wolfe RE, Zhang P, Dellomo JJ, Tan B. Ten Years of VIIRS On-Orbit Geolocation Calibration and Performance. Remote Sensing. 2022; 14(17):4212. https://doi.org/10.3390/rs14174212
Chicago/Turabian StyleLin, Guoqing, Robert E. Wolfe, Ping Zhang, John J. Dellomo, and Bin Tan. 2022. "Ten Years of VIIRS On-Orbit Geolocation Calibration and Performance" Remote Sensing 14, no. 17: 4212. https://doi.org/10.3390/rs14174212
APA StyleLin, G., Wolfe, R. E., Zhang, P., Dellomo, J. J., & Tan, B. (2022). Ten Years of VIIRS On-Orbit Geolocation Calibration and Performance. Remote Sensing, 14(17), 4212. https://doi.org/10.3390/rs14174212