Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Winds
2.1.1. Scatterometers
2.1.2. Imaging Radiometers
2.2. NWP Winds from ERA5
2.2.1. Wind Speed Adjustments to ERA5
- (i).
- A 7 degree-wide zonal band, extending 3 degrees on either side of the target band;
- (ii).
- The target month, as well the two months immediately before and after the target month.
2.2.2. Wind Vector Adjustments to ERA5
2.3. Adjustments to Radiometer Wind
2.4. CCMP Processing
3. Results
3.1. Comparison versus ASCAT-B
3.1.1. Maps of Mean and RMS Difference
3.1.2. Hovmöller Plots
3.1.3. Histograms
3.1.4. Binned Differences
3.2. Long-Term Trends
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schuster, U.; Monteiro, P.M.S.; Tilbrook, B.D.; Lenton, A.A.; Sabine, C.; Takahashi, T.; Wanninkhof, H.; Hood, M.; Watson, A.J.; Olsen, A.; et al. Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling. In Proceedings of the OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 31 December 2010; pp. 78–93, European Space Agency. [Google Scholar]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Rodriguez, E.; Stiles, B.W.; Bourassa, M.A.; Long, D.G.; Hoffman, R.N.; Stoffelen, A.; Verhoef, A.; O’Neill, L.W.; et al. Evaluating and Extending the Ocean Wind Climate Data Record. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2165–2185. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Huang, B.; Hu, Z.-Z.; Kumar, A.; Wen, C.; Behringer, D.; Nadiga, S. An Assessment of Oceanic Variability in the NCEP Climate Forecast System Reanalysis. Clim. Dyn. 2011, 37, 2511–2539. [Google Scholar] [CrossRef]
- Atlas, R.M.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-Calibrated, Multi-Platform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Desbiolles, F.; Bentamy, A.; Blanke, B.; Roy, C.; Mestas-Nuñez, A.M.; Grodsky, S.A.; Herbette, S.; Cambon, G.; Maes, C. Two Decades [1992–2012] of Surface Wind Analyses Based on Satellite Scatterometer Observations. J. Mar. Syst. 2017, 168, 38–56. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X. Buoy Perspective of a High-Resolution Global Ocean Vector Wind Analysis Constructed from Passive Radiometers and Active Scatterometers (1987–Present). J. Geophys. Res. Ocean. 2012, 117, C11013. [Google Scholar] [CrossRef]
- Mears, C.A.; Scott, J.; Wentz, F.J.; Ricciardulli, L.; Leidner, S.M.; Hoffman, R.; Atlas, R. A Near-Real-Time Version of the Cross-Calibrated Multiplatform (CCMP) Ocean Surface Wind Velocity Data Set. J. Geophys. Res. Ocean. 2019, 124, 6997–7010. [Google Scholar] [CrossRef]
- Uppala, S.; Kållberg, P.W.; Simmons, A.J.; Andrae, U.; Da Costa Bechtold, V.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 Re-Analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3013. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- McGregor, S.; Sen Gupta, A.; Dommenget, D.; Lee, T.; McPhaden, M.J.; Kessler, W.S. Factors Influencing the Skill of Synthesized Satellite Wind Products in the Tropical Pacific. J. Geophys. Res. Ocean. 2017, 122, 1072–1089. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Geernaert, G.; Katsaros, K.B. Incorporation of Stratification Effects on the Oceanic Roughness Length in the Derivation of the Neutral Drag Coefficient. J. Phys. Oceanogr. 1986, 16, 1580–1584. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Wentz, F.J. A Scatterometer Geophysical Model Function for High Winds: QuikSCAT Ku-2011. J. Atmos. Ocean. Technol. 2015, 32, 1829–1846. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Manaster, A. Intercalibration of ASCAT Scatterometer Winds from MetOp-A, -B, and -C, for a Stable Climate Data Record. Remote Sens. 2021, 13, 3678. [Google Scholar] [CrossRef]
- Manaster, A.; Ricciardulli, L.; Meissner, T. Validation of High Ocean Surface Winds from Satellites Using Oil Platform Anemometers. J. Atmos. Ocean. Technol. 2019, 36, 803–818. [Google Scholar] [CrossRef]
- Meissner, T.; Ricciardulli, L.; Wentz, F.J. Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms. Bull. Am. Meteorol. Soc. 2017, 98, 1660–1677. [Google Scholar] [CrossRef]
- Mai, M.; Zhang, B.; Li, X.; Hwang, P.A.; Zhang, J.A. Application of AMSR-E and AMSR2 Low-Frequency Channel Brightness Temperature Data for Hurricane Wind Retrievals. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4501–4512. [Google Scholar] [CrossRef]
- Gaiser, P.W.; St. Germain, K.M.; Twarog, E.; Poe, G.; Purdy, W.; Richardson, D.; Grossman, W.; Jones, W.L.; Spencer, D.; Golba, G.; et al. The WindSat Spaceborne Polarimetric Microwave Radiometer: Sensor Description and Early Orbit Performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2347–2361. [Google Scholar] [CrossRef]
- Wentz, F.J. A 17-Year Climate Record of Environmental Parameters Derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Clim. 2015, 28, 6882–6902. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Lyu, X.; Liu, S.; Zhao, Z.; Ren, P. An Adversarial Learning Approach to Forecasted Wind Field Correction with an Application to Oil Spill Drift Prediction. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102924. [Google Scholar] [CrossRef]
- Gonzalez-Arceo, A.; Zirion-Martinez de Musitu, M.; Ulazia, A.; del Rio, M.; Garcia, O. Calibration of Reanalysis Data against Wind Measurements for Energy Production Estimation of Building Integrated Savonius-Type Wind Turbine. Appl. Sci. 2020, 10, 9017. [Google Scholar] [CrossRef]
- Bonjean, F.; Lagerloef, G.S.E. Diagnostic Model and Analysis of the Surface Currents in the Tropical Pacific Ocean. J. Phys. Oceanogr. 2002, 32, 2938–2954. [Google Scholar] [CrossRef]
- Wentz, F.; Meissner, T. Atmospheric Absorption Model for Dry Air and Water Vapor at Frequencies below 100 GHz Derived from Spaceborne Radiometer Observations. Radio Sci. 2016, 51, 381–391. [Google Scholar] [CrossRef]
- Wright, E.E.; Bourassa, M.A.; Stoffelen, A.; Bidlot, J.-R. Characterizing Buoy Wind Speed Error in High Winds and Varying Sea State with ASCAT and ERA5. Remote Sens. 2021, 13, 4588. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Foltz, G.R.; Manaster, A.; Meissner, T. Assessment of Saildrone Extreme Wind Measurements in Hurricane Sam Using MW Satellite Sensors. Remote Sens. 2022, 14, 2726. [Google Scholar] [CrossRef]
Sensor | Satellite | Sensor Type | Acronym Used in This Work |
---|---|---|---|
Special Sensor Microwave/Imager (SSM/I) | Defense Meteorological Satellite Program (DMSP) F10 | Radiometer | F10 |
SSM/I | DMSP F11 | Radiometer | F11 |
SSM/I | DMSP F13 | Radiometer | F13 |
SSM/I | DMSP F14 | Radiometer | F14 |
SSM/I | DMSP F15 | Radiometer | F15 |
Special Sensor Microwave Imager Sounder (SSMIS) | DMSP F16 | Radiometer | F16 |
SSMIS | DMSP F17 | Radiometer | F17 |
SSMIS | DMSP F18 | Radiometer | F18 |
Tropical Rainfall Monitoring Mission (TRMM) | TRMM Microwave Radiometer | Radiometer Low | TMI |
AQUA (or EOS PM-1) | Advanced Microwave Scanning Radiometer—EOS | Radiometer Low | AMSRE |
Coriolis | WindSat | Radiometer Low | WindSat |
GCOM-W1 | AMSR2 | Radiometer Low | AMSR2 |
Global Precipitation Mission (GPM) | GPM microwave radiometer (GMI) | Radiometer Low | GMI |
QuikSCAT | SeaWinds | Scatterometer | QSCAT |
MetOp-A | Advanced Scatterometer (ASCAT) | Scatterometer | ASCAT-A |
MetOp-B | ASCAT | Scatterometer | ASCAT-B |
Dataset Name | Description |
---|---|
CCMP 1.0 | Original CCMP from [5] using ERA-40 and ECMWF operational analysis as the background |
CCMP 2.0 | Updated CCMP, with added satellites, using ERA-Int as the background |
CCMP NRT | Near Real Time Version of CCMP, using the NCEP Global Forecast System Analysis as the background |
CCMP ADJ | New version of CCMP described here, using ERA ADJ as the background field. |
ERA5 OSCAR | ERA5 Neutral Stability winds, adjusted using the OSCAR Current Analysis |
ERA5 ADJ | ERA5 OSCAR with additional wind speed and wind vector adjustments to match scatterometers |
Subset | Mean W | RMS W | Mean U | RMS U | Mean V | RMS V | |
---|---|---|---|---|---|---|---|
CCMP ERA5 ADJ | ALL | −0.002 | 0.901 | 0.001 | 1.152 | −0.007 | 1.233 |
CCMP ERA5 ADJ | NOSAT | −0.087 | 1.315 | 0.070 | 1.625 | −0.019 | 1.774 |
CCMP NRT | ALL | 0.004 | 0.998 | 0.045 | 1.260 | 0.015 | 1.350 |
CCMP NRT | NOSAT | −0.092 | 1.355 | 0.126 | 1.655 | 0.019 | 1.775 |
CCMP 2.0 | ALL | −0.074 | 1.027 | 0.056 | 1.299 | 0.040 | 1.381 |
CCMP 2.0 | NOSAT | −0.284 | 1.576 | 0.176 | 1.841 | 0.057 | 1.965 |
ERA5_OSCAR | ALL | −0.193 | 1.097 | −0.005 | 1.273 | 0.002 | 1.329 |
Subset | Mean W | RMS W | Mean U | RMS U | Mean V | RMS V | |
---|---|---|---|---|---|---|---|
CCMP ERA5 ADJ | ALL | 0.014 | 1.547 | −0.392 | 1.675 | −0.372 | 2.330 |
CCMP ERA5 ADJ | NOSAT | −0.063 | 1.782 | −0.512 | 2.034 | −0.721 | 2.972 |
CCMP NRT | ALL | 0.059 | 1.668 | −0.467 | 1.740 | −0.465 | 2.609 |
CCMP NRT | NOSAT | −0.083 | 1.858 | −0.715 | 2.051 | −0.952 | 3.288 |
CCMP 2.0 | ALL | −0.164 | 1.815 | −0.656 | 1.930 | −0.899 | 2.829 |
CCMP 2.0 | NOSAT | −0.515 | 2.286 | −1.123 | 2.487 | −1.659 | 3.692 |
ERA5_OSCAR | ALL | −1.274 | 2.098 | −1.675 | 2.374 | −2.042 | 3.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mears, C.; Lee, T.; Ricciardulli, L.; Wang, X.; Wentz, F. Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds. Remote Sens. 2022, 14, 4230. https://doi.org/10.3390/rs14174230
Mears C, Lee T, Ricciardulli L, Wang X, Wentz F. Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds. Remote Sensing. 2022; 14(17):4230. https://doi.org/10.3390/rs14174230
Chicago/Turabian StyleMears, Carl, Tong Lee, Lucrezia Ricciardulli, Xiaochun Wang, and Frank Wentz. 2022. "Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds" Remote Sensing 14, no. 17: 4230. https://doi.org/10.3390/rs14174230
APA StyleMears, C., Lee, T., Ricciardulli, L., Wang, X., & Wentz, F. (2022). Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds. Remote Sensing, 14(17), 4230. https://doi.org/10.3390/rs14174230