Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Materials
2.2.1. Soil Sample Points
2.2.2. Hyperspectral Data Processing
2.2.3. Feature Band Extraction Based on the Correlation Coefficient Method
3. Methodology
3.1. Dynamic Fitness Inertia Weight Particle Swarm Optimization
Algorithm 1. DPSO algorithm flow. |
Step1: Initialize the population containing m particles, and randomly generate the position and velocity of each particle; |
Step2: Calculate and evaluate the fitness value of each particle; |
Step3: For each particle, its fitness value is compared with its individual optimal value . If it is better, it is taken as the current individual optimal position; |
Step4: For each particle, its fitness value is compared with the overall optimal value . If it is better, it will be taken as the current overall optimal position; Step5: Calculate the inertia weight of each particle according to Formula (4); |
Step6: Calculate the particle velocity and update the particle position according to Formulas (2) and (3); |
Step7: Judge whether the preset fitness threshold or the maximum number of iterations has been reached. If yes, terminate. Otherwise, continue to cycle to step 2 until the termination conditions are met. |
3.2. Improved BP Neural Network
3.3. Model Accuracy Evaluation
4. Results
4.1. Feature-Band Extraction Results
4.2. Model Accuracy Evaluation
4.3. Model Inversion Results
5. Discussion
5.1. Influence of SOM Content on Spectral Reflectance
5.2. Comparison of Soil Organic Matter Inversion Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Pan, Y.; Dou, X.; Zhang, X.; Qiu, Z.; Xu, M.; Xie, Y.; Wang, N. Soil organic matter content inversion model with remote sensing image in field scale of blacksoil area. Trans. Chin. Soc. Agric. Eng. 2018, 34, 127–133. [Google Scholar] [CrossRef]
- Hummel, J.W.; Sudduth, K.A.; Hollinger, S.E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput. Electron. Agric. 2001, 32, 149–165. [Google Scholar] [CrossRef]
- Martin, P.D.; Malley, D.F.; Manning, G.; Fuller, L. Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. Soil Sci. Am. J. 2002, 82, 413–422. [Google Scholar] [CrossRef]
- Zhou, W.; Xie, L.J.; Yang, H.; Hua, L.; Li, H.R.; Yang, M. Hyperspectral Inversion of Soil Organic Matter Content in the Three-Rivers Source Region. Chin. J. Soil Sci. 2021, 52, 564–574. [Google Scholar] [CrossRef]
- Wu, S. Studies on the Inversion of Soil Organic Matter Content in Typical Black Soil Zone (Dissertation); Jilin University: Changchun, China, 2016. [Google Scholar]
- Daniel, Ž.; Tereza, Z.; Jiří, K. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic. Remote Sens. 2017, 9, 28. [Google Scholar] [CrossRef]
- Bowers, S.A.; Hanks, R.J. Reflection of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [Google Scholar] [CrossRef]
- Al-Abbas, A.H.; Swain, P.H.; Baumgarder, M.F. Relating organic matter and clay content to the multi-spectral radiance of soil. Socil Sci. 1972, 114, 477–485. [Google Scholar] [CrossRef]
- Dai, C.D.; Chen, B.M.; Liu, Y.W.; Ni, J.H. Mathematical statistics method for selecting the best band of remote sensing of soil resources. Nat. Resour. 1981, 3, 85–93. [Google Scholar]
- Rossel, R.A.V.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Nowkandeh, S.M.; Noroozi, A.A.; Homaee, M. Estimating soil organic matter content from Hyperion reflectance images using PLSR, PCR, MinR and SWR models in semi-arid regions of Iran. Environ. Dev. 2018, 25, 23–32. [Google Scholar] [CrossRef]
- Goetz, A.F. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Tan, K.; Wang, H.M.; Zhang, Q.Q.; Jia, X.P. An improved estimation model for soil heavy metal(loid) concentration retrieval in mining areas using reflectance spectroscopy. J. Soils Sediments 2018, 18, 2008–2022. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression. Remote Sens. 2018, 10, 1117. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef]
- Xu, S.; Wang, M.; Shi, X.; Yu, Q.; Zhang, Z. Integrating hyperspectral imaging with machine learning techniques for the high-resolution mapping of soil nitrogen fractions in soil profiles. Sci. Total Environ. 2021, 754, 142135. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, M.; Shi, X. Hyperspectral imaging for high-resolution mapping of soil carbon fractions in intact paddy soil profiles with multivariate techniques and variable selection. Geoderma 2020, 370, 114358. [Google Scholar] [CrossRef]
- Lin, X.; Su, Y.-C.; Shang, J.; Sha, J.; Li, X.; Sun, Y.-Y.; Ji, J.; Jin, B. Geographically Weighted Regression Effects on Soil Zinc Content Hyperspectral Modeling by Applying the Fractional-Order Differential. Remote Sens. 2019, 11, 636. [Google Scholar] [CrossRef]
- Malec, S.; Rogge, D.; Heiden, U.; Sanchez-Azofeifa, A.; Bachmann, M.; Wegmann, M. Capability of Spaceborne Hyperspectral En MAP Mission for Mapping Fractional Cover for Soil Erosion Modeling. Remote Sens. 2015, 7, 11776–11800. [Google Scholar] [CrossRef]
- Niang, M.A.; Nolin, M.; Bernier, M.; Perron, I. Digital Mapping of Soil Drainage Classes Using Multitemporal RADARSAT-1 and ASTER Images and Soil Survey Data. Appl. Environ. Soil Sci. 2012, 2012, 430347. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Pyo, J.C.; Hong, S.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, W.; Cen, Y.; Zhang, L.; Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 2019, 650, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Ou, D.; Tan, K.; Lai, J.; Jia, X.; Wang, X.; Chen, Y.; Li, J. Semi-supervised DNN regression on airborne hyperspectral imagery for improved spatial soil properties prediction. Geoderma 2021, 385, 114875. [Google Scholar] [CrossRef]
- Pudelko, A.; Chodak, M. Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods. Geoderma 2020, 368, 114306. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Transfer learning to localise a continental soil vis-NIR calibration model. Geoderma 2019, 340, 279–288. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Du, B.; Zhang, F. Spectral–spatial unified networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5893–5909. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 2006, 33, 859–871. [Google Scholar] [CrossRef]
- Cui, Z.H.; Zeng, J.C. A guaranteed global convergence particle swarm optimize. In Proceedings of the 4th International Conference on Rough Sets and Current Trends in Computing, Uppsala, Sweden, 1–5 June 2004; pp. 762–767. [Google Scholar]
- Durbadal, M.; Sakti, P.G.; Anup, K.B. Design of Concentric Circular Antenna Array with Central Element Feeding Using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach and Evolutionary Programing Technique. J. Infrared Millim. Terahertz Waves 2010, 31, 667–680. [Google Scholar] [CrossRef]
- Ebrahim, G. Particle swarm optimization approach for forecasting backbreak induced by bench blasting. Neural Comput. Appl. 2017, 28, 1855–1862. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, T.; Song, Y.L.; Qian, F. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight. Sensors 2018, 18, 1292. [Google Scholar] [CrossRef] [Green Version]
- Kyle, R.H.; Andries, P.E.; Ombuki-Berman, B.M. Inertia weight control strategies for particle swarm optimization. Swarm Intell. 2016, 10, 267–305. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Y.G.; Hua, C.; Guan, X. A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques. Appl. Soft Comput. J. 2015, 28, 138–149. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, F.; Ren, X.; Chen, Y.; Chao, K.; Zhao, R.; Dong, B.; Wang, W. Associate multi-task scheduling algorithm based on self-adaptive inertia weight particle swarm optimization with disruption operator and chaos operator in cloud environment. Serv. Oriented Comput. Appl. 2018, 12, 87–94. [Google Scholar] [CrossRef]
- Hao, P.; Bai, X. Artificial Neural Network–Based Machine Learning Approach to Improve Orbit Prediction Accuracy. Space Flight Mech. Meet. 2018, 55, 1248–1260. [Google Scholar]
- Peng, H.; Bai, X. Improving orbit prediction accuracy through supervised machine learning. Adv. Space Res. 2018, 61, 2628–2646. [Google Scholar] [CrossRef]
- Chen, E.; Chang, R.; Shi, K.; Ye, A.; Miao, F.; Yuan, J.; Guo, K.; Wei, Y.; Li, Y. Spectral-Spatial Hyperspectral Image Semi- supervised Classification by Fusing Maximum Noise Fraction and Adaptive Random Multigraphs. Discret. Dyn. Nat. Soc. 2021, 2021, 117–132. [Google Scholar] [CrossRef]
- Chen, E.; Chang, R.; Shi, K.; Ye, A.; Miao, F.; Yuan, J.; Guo, K.; Wei, Y.; Li, Y. Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation. PLoS ONE 2021, 16, 78–90. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, R.; Guo, H.; Pei, X.; Zhao, W.; Yu, Z.; Zou, L. Prediction of Potential Geothermal Disaster Areas along the Yunnan–Tibet Railway Project. Remote Sens. 2022, 14, 3036. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, R.; Zhao, W.; Li, S.; Guo, H.; Xiao, K.; Wu, L.; Hou, D.; Zou, L. Quantitative Prediction and Evaluation of Geothermal Resource Areas in the Southwest Section of the Mid-Spine Belt of Beautiful China. Int. J. Digit. Earth 2022, 15, 748–769. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Y.; Sun, Q.; Yang, G.; Zhang, C. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform. Comput. Electron. Agric. 2019, 167, 105053. [Google Scholar] [CrossRef]
Content Range | Mean Value | Standard Deviation | Kurtosis | Skewness | Coefficient of Variation | |
---|---|---|---|---|---|---|
Before culling | 34–71.7 g/kg | 48.89 g/kg | 6.92 g/kg | 4.598 | 0.823 | 14.2% |
After elimination | 37.4–59.9 g/kg | 47.9 g/kg | 4.90 g/kg | 2.867 | −0.086 | 10.24% |
Spectral Transformation Form | Feature Bands /nm | Correlation Coefficient | Spectral Transformation Form | Feature Bands /nm | Correlation Coefficient |
---|---|---|---|---|---|
896 | −0.39 | 774 1375 1731 2203 | −0.58 0.67 0.60 0.45 | ||
896 | 0.42 | 774 1360 1699 2203 | −0.53 0.67 0.50 0.44 | ||
896 | −0.41 | 839 1184 1503 1696 | −0.50 −0.49 0.51 0.51 | ||
896 | −0.40 | 839 1184 1203 2196 | 0.51 −0.51 0.50 −0.48 | ||
896 | −0.39 | 839 1203 1503 2331 | −0.51 0.51 0.46 0.41 | ||
774 1361 1713 2203 | −0.54 0.69 0.55 0.45 | 839 1184 1503 1696 1913 | −0.50 −0.51 0.49 0.47 −0.44 | ||
564 1143 1662 2381 | 0.48 −0.71 −0.60 0.45 | 839 1184 1503 1696 1913 | −0.49 −0.49 0.49 0.52 −0.42 | ||
685 1257 1765 2381 | −0.61 0.80 0.51 −0.45 |
Algorithm Parameters | Settings | Network Parameters | Settings |
---|---|---|---|
Maximum iterations | 1000 | Maximum training times | 100 |
Learning factor C1 | 2 | Input layer node | 3 |
Learning factor C2 | 2 | Hidden layer node | 5 |
Particle swarm size | 100 | Output layer node | 1 |
Speed range | [−5, 5] |
RMSE | RPD | ||
---|---|---|---|
Multiple stepwise regression | 0.58 | 3.13 | 1.21 |
Partial least squares regression | 0.79 | 2.17 | 2.06 |
BP neural network (hidden layer 5 nodes) | 0.79 | 2.04 | 2.14 |
BP neural network (hidden layer 7 nodes) | 0.77 | 2.27 | 2.02 |
BP neural network (hidden layer 11 nodes) | 0.46 | 3.50 | 1.41 |
DPSO-BPNN network model | 0.89 | 1.58 | 2.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, R.; Chen, Z.; Wang, D.; Guo, K. Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network. Remote Sens. 2022, 14, 4316. https://doi.org/10.3390/rs14174316
Chang R, Chen Z, Wang D, Guo K. Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network. Remote Sensing. 2022; 14(17):4316. https://doi.org/10.3390/rs14174316
Chicago/Turabian StyleChang, Ruichun, Zhe Chen, Daming Wang, and Ke Guo. 2022. "Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network" Remote Sensing 14, no. 17: 4316. https://doi.org/10.3390/rs14174316
APA StyleChang, R., Chen, Z., Wang, D., & Guo, K. (2022). Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network. Remote Sensing, 14(17), 4316. https://doi.org/10.3390/rs14174316