Spatio-Temporal Patterns and Driving Factors of Vegetation Change in the Pan-Third Pole Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Dimidiate Pixel Model
2.3.2. Trend Analysis
- (1)
- Theil–Sen median trend analysis and Mann–Kendall significance test
- (2)
- Standard deviation (SD)
2.3.3. Multiple Regression Residual Analysis
2.3.4. Partial Correlation Analysis
2.3.5. Driving Factors of FVC Change
3. Results
3.1. Spatial and Temporal Evolution Characteristics of the FVC
3.1.1. Changes in Overall Characteristics
3.1.2. Trend Analysis of Subregions
3.2. Analysis of the Driving Factors of the FVC
3.2.1. Response of FVC Change to Climate Change
3.2.2. Response of the FVC Change to Human Activities
3.2.3. Driving Factors of FVC Change
3.3. Correlation Analysis of the FVC and Climatic Factors
3.3.1. Characteristics of Inter-Annual Variability of Climate Factors
3.3.2. Spatial Correlation between FVC and Hydrothermal Conditions
4. Discussion
4.1. Topographic Differentiation Effect on FVC
4.2. Spatial and Temporal Evolution Characteristics of the FVC under the Impact of Climate Change and Human Activities
4.3. Response of the FVC to Changes in Hydrothermal Conditions
4.4. Limitations
5. Conclusions
- (1)
- The average FVC over the past 34 years in the PTP region was 45.65%, with significant regional differences in macroscopic patterns, with Southeast Asia having the highest average FVC at 94.16% and West Asia the lowest at 17.08%.
- (2)
- During the 34 years, the slope of the FVC change in the PTP region fluctuated between −0.15•10a−1 and 0.36•10a−1, with an average slope of 0.003•10a−1. The FVC change may be roughly divided into three phases: the fast-rising phase from 1982 to 1994; the browning phase from 1994 to 2003; and the steady greening phase after 2003. The proportions of areas with obvious improvement, mild improvement, unchanged, slight degradation, and serious degradation in the FVC were 23.83%, 13.53%, 39.29%, 11.16%, and 12.19%, respectively. In subregions, the trend of change (Slope) in the FVC was greater than zero, with the greatest increasing trend in South Asia (Slope = 0.0078•10a−1) and the lowest in Central Asia (Slope = 0.0002•10a−1). Overall, vegetation in the Pan-Third Pole region showed a greening trend over the 34-year period.
- (3)
- The effects of climate change and human activities on the FVC in the PTP region were spatially heterogeneous but were mainly positive. In the PTP region, the impacts of climate change and human activities on the average growing season FVC changes from 1982 to 2015 were 0.0013•10a−1 and 0.0011•10a−1, respectively. Climate change and human activities were the driving factors of the FVC increases in South Asia, West Asia, and Russia; climate change was the driving factor of the FVC increase in Central and Eastern Europe (excluding Russia), East Asia, and Central Asia; and human activities were the driving factors of the FVC increase in Southeast Asia.
- (4)
- From 1982 to 2015, the climate of the PTP region tended to be warm and humid, with 70.3% of the FVC positively correlated with temperature and 54.5% of the FVC positively correlated with precipitation. In the growing season, the FVC was positively correlated with the annual mean temperature at high latitudes, while for arid and semi-arid regions in the low and middle latitudes, the FVC during the growing season was negatively correlated with temperature and positively correlated with precipitation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Lin, H.; Long, X.; Cai, Y. Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000–2019 time-series landsat data. Sci. Total Environ. 2021, 780, 146615. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, H. Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sens. Basel 2015, 7, 10243–10268. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Stott, P.A.; Achutarao, K.M.; Allen, M.R.; Gillett, N.; Gutzler, D.; Hansingo, K.; Hegerl, G.; Hu, Y.Y.; Jain, S.; et al. Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Zhou, T. New physical science behind climate change: What does IPCC AR6 tell us? Innovation 2021, 2, 100173. [Google Scholar] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC. summary for policymakers. In Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Cambridge University Press: New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Myneni, R.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Zhou, L.M.; Tucker, C.J.; Kaufmann, R.K. Variations in northern vegetation activity inferred from Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar]
- Jeong, S.J.; Ho, C.H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the northern hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar]
- Xu, L.; Myneni, R.; Iii, F.S.C.; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Chen, X.; Hu, B.; Yu, R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Glob. Chang. Biol. 2005, 11, 1118–1130. [Google Scholar] [CrossRef]
- Jorda-Capdevila, D.; Gampe, D.; Huber García, V.; Ludwig, R.; Sabater, S.; Vergoñós, L.; Acuña, V. Impact and mitigation of global change on freshwater-related ecosystem services in southern Europe. Sci. Total Environ. 2019, 651, 895–908. [Google Scholar]
- Faour, G.; Mhawej, M.; Nasrallah, A. Global trends analysis of the main vegetation types throughout the past four decades. Appl. Geogr. 2018, 97, 184–195. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Zeng, X.B.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar]
- Qi, J.; Marsett, R.; Moran, M.; Goodrich, D.; Heilman, P.; Kerr, Y.; Dedieu, G.; Chehbouni, A.; Zhang, X. Spatial and temporal dynamics of vegetation in the san pedro river basin area. Agric. For. Meteorol. 2000, 105, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.D.; Chen, F.H.; Cui, P.; Ma, M.Y.; Xu, B.Q.; Zhu, L.P.; Zhang, F.; Wang, W.C.; Ai, L.K.; Yang, X.X. From tibetan plateau to third pole and pan-third pole. Bull. Chin. Acad. Sci. 2017, 32, 925–931. (In Chinese) [Google Scholar]
- Zhang, R.H.; Zhou, S.W. Temperature trends on the Qinghai-Tibet plateau and other regions in the same latitudinal zone and the possible impact of ozone. J. Meteorol. Res. Prc. 2008, 66, 916–925. (In Chinese) [Google Scholar]
- Chen, F.H.; An, C.B.; Dong, G.H.; Zhang, D.J. Human activities, environmental changes, and rise and decline of silk road civilization in pan-third pole region. Bull. Chin. Acad. Sci. 2018, 32, 967–975. (In Chinese) [Google Scholar]
- Lloret, F.; Escudero, A.; Iriondo, J.; Martinez-Vilalta, J.; Valladares, F. Extreme climatic events and vegetation: The role of stabilizing processes. Glob. Chang. Biol. 2011, 18, 797–805. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.L.; Zhang, M.Y.; Zhang, C.H. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.H.; Baetz, B.W.; Huang, W. A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment. J. Hydrol. 2015, 530, 716–733. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Liu, H.; Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 2005, 32, 347–354. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.C.; Lin, A.W.; Yu, D.; Yuan, M.X.; Li, C.A. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Willem, J.D.; Van, L.W.; Barron, J.O.; Stuart, E.M. Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sens. Environ. 2006, 100, 67–81. [Google Scholar]
- Beck, H.E.; McVicar, T.R.; Van Dijk, A.I.; Schellekens, J.; de Jeu, R.A.; Bruijnzeel, L.A. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The normalized difference vegetation index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.H.; Chen, J.; Jin, X.M.; Wan, L.; Gong, B. Regularity of vegetation coverage changes in the Tibetan plateau over the last 21 years. Adv. Earth Sci. 2007, 22, 33–40. [Google Scholar]
- Wang, C.Y.; Wang, J.N.; Naudiyal, N.; Wu, N.; Cui, X.; Wei, Y.Q.; Chen, Q.T. Multiple effects of topographic factors on spatiotemporal variations of vegetation patterns in the three parallel rivers region, southeast Qinghai-Tibet plateau. Remote Sens. 2021, 14, 151–169. [Google Scholar]
- Xiong, Q.; Xiao, Y.; Halmy, M.W.A.; Dakhil, M.A.; Liang, P.; Liu, C.; Zhang, L.; Pandey, B.; Pan, K.; El Kafraway, S.B.; et al. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet plateau of China during 2000–2015. J. Arid Land 2019, 11, 637–651. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X. Response of vegetation in the Qinghai-Tibet plateau to global warming. Chin. Geogr. Sci. 2007, 17, 151–159. [Google Scholar] [CrossRef]
- Xue, S.-Y.; Xu, H.-Y.; Mu, C.-C.; Wu, T.-H.; Li, W.-P.; Zhang, W.-X.; Streletskaya, I.; Grebenets, V.; Sokratov, S.; Kizyakov, A.; et al. Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Adv. Clim. Chang. Res. 2021, 12, 456–465. [Google Scholar] [CrossRef]
- Tucker, C.J.; Slayback, D.; Pinzon, J.E.; Los, S.; Myneni, R.; Taylor, M.G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 2001, 45, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, H.; Jiao, F.; Gong, H.; Lin, Z. Time-varying trends of vegetation change and their driving forces during 1981–2016 along the silk road economic belt. Catena 2020, 195, 104796. [Google Scholar] [CrossRef]
- Luo, M.; Sa, C.; Meng, F.; Duan, Y.; Liu, T.; Bao, Y. Assessing extreme climatic changes on a monthly scale and their implications for vegetation in central Asia. J. Clean. Prod. 2020, 271, 122396. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Han, M.; Li, Y.; Yang, R. Temporal patterns of shrub vegetation and variation with precipitation in Gurbantunggut Desert, central Asia. Adv. Meteorol. 2015, 2015, 157245. [Google Scholar] [CrossRef]
- Yin, G.; Hu, Z.; Chen, X.; Tiyip, T. Vegetation dynamics and its response to climate change in central Asia. J. Arid Land 2016, 8, 375–388. [Google Scholar] [CrossRef]
- Hao, H.; Chen, Y.; Xu, J.; Li, Z.; Li, Y.; Kayumba, P.M. Water deficit may cause vegetation browning in central Asia. Remote Sens. 2022, 14, 2574. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y. Continuous warming shift greening towards browning in the southeast and northwest high mountain Asia. Sci. Rep. 2021, 11, 17920. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Dass, P.; Rawlins, M.A.; Kimball, J.S.; Kim, Y. Environmental controls on the greening of terrestrial vegetation across northern Eurasia. Biogeosci. Discuss. 2015, 12, 9121–9162. [Google Scholar]
- Gong, L.S.; Harazono, Y.; Oikawa, T.; Zhao, H.L.; Ying, H.Z.; Chang, X.L. Grassland desertification by grazing and the resulting micrometeorological changes in innermongolia. Agr. Forest Meteorol. 2000, 102, 125–137. [Google Scholar] [CrossRef]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in mongolian grass-lands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [PubMed]
- Namdari, S.; Alnasrawi, A.I.Z.; Ghorbanzadeh, O.; Sorooshian, A.; Kamran, K.V.; Ghamisi, P. Time series of remote sensing data for interaction analysis of the vegetation coverage and dust activity in the middle east. Remote Sens. 2022, 14, 2963. [Google Scholar] [CrossRef]
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Zeng, F.-W.; Collatz, G.J.; Pinzon, J.E.; Ivanoff, A. Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) at global scales. Remote Sens. 2013, 5, 3918–3950. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; He, H.; Xu, J.; Jin, Y. Detecting global vegetation changes using mann-kendal (MK) trend test for 1982–2015 time period. Chin. Geogr. Sci. 2018, 28, 907–919. [Google Scholar] [CrossRef]
- Liu, Q.H.; Wu, J.J.; Li, L. Ecological environment monitoring for sustainable development goals in the Belt and Road region. Natl. Remote Sens. Bull. 2018, 22, 686–698. [Google Scholar]
- Wang, F.; Ding, J.L.; Wei, Y. Analysis of drought characteristics over countries and regions of “the Belt and Road Initiatives” in recent one hundred years. J. Geogr. Sci. 2017, 19, 1442–1455. [Google Scholar]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent ecological transitions in China: Greening, browning and influential factors. Sci. Rep. UK 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Y.; Huete, A.R. Linearization of NDVI based on its relationship with vegetation fraction. Photogramm. Eng. Remote Sens. 2010, 76, 965–975. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.H.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Chang. 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Li, M.; Chu, R.H.; Shen, S.H.; Islam, A.R.M.T. Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China. Sci. Total Environ. 2018, 625, 496–509. [Google Scholar] [CrossRef]
- Wakes, A.; Sauvage, S.; Borbon, A.E.A. Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France. Atmos. Environ. 2016, 141, 263–275. [Google Scholar]
- Song, X.Y.; Song, S.B.; Sun, W.Y.E.A. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res. 2015, 157, 137–152. [Google Scholar] [CrossRef]
- Xu, J.H. Mathematical Methods in Gontemporary Geography, 3rd ed.; Higher Education Press: Beijing, China, 2016. [Google Scholar]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in south Africa. J. Arid Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Zhang, G.L.; Xu, X.L.; Zhou, C.P.E.A. Responses of vegetation changes to climatic variations in Hulun Buir grassland in past 30 years. Acta. Geographica. Sinica. 2011, 66, 47–58. [Google Scholar]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the loess plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Riihimäki, H.; Heiskanen, J.; Luoto, M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2017, 56, 44–53. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G.Y. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Piao, S.; Chen, A.; Yang, H.; Liu, Q.; Fu, Y.H.; Janssens, I.A. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 2019, 10, 2970. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, L.; Liu, Y.; Gao, J.; Dai, E.; Feng, A.; Wang, W. The Belt and Road: Geographical pattern and regional risks. J. Geogr. Sci. 2019, 29, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yan, J.; Liu, X.; Wan, J. Response of vegetation restoration to climate change and human activities in Shaanxi-Gansu-Ningxia region. J. Geogr. Sci. 2013, 23, 98–112. [Google Scholar] [CrossRef]
- Wang, C.; Liang, W.; Yan, J.; Jin, Z.; Zhang, W.; Li, X. Effects of vegetation restoration on local microclimate on the loess plateau. J. Geogr. Sci. 2022, 32, 291–316. [Google Scholar] [CrossRef]
- Wang, Q.; Bo, Z.; Zhang, Z.Q. The three-north shelterbelt program and dynamic changes in vegetation cover. J. Resour. Ecology. 2014, 5, 53–59. [Google Scholar]
- Zhou, G.S.; Wang, Y.H.; Bai, L.P.; Xu, Z.Z.; Shi, R.X. Study on the interaction between terrestrial ecosystems and global change. Acta. Meteorol. Sin. 2004, 62, 692–707. [Google Scholar]
- Liu, Q.; Fu, Y.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Chang. Biol. 2015, 22, 644–655. [Google Scholar] [CrossRef]
- Liu, C.Y.; Liu, J.Y.; Zhang, Q.; Ci, H.; Gu, X.H.; Gulakhmadov, A. Attribution of NDVI dynamics over the globe from 1982 to 2015. Remote Sens. 2022, 14, 2706. [Google Scholar] [CrossRef]
- Martens, P.T. Maastricht school of management the political economy of water insecurity in central Asia given the Belt and Road initiative. Cent. Asian J. Water Res. 2018, 4, 79–94. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Fensholt, R.; Wang, K.; Vitkovskaya, I.; Tian, F. Climate contributions to vegetation variations in central Asian drylands: Pre- and post-USSR collapse. Remote Sens. 2015, 7, 2449–2470. [Google Scholar] [CrossRef]
- Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E.F.; Radeloff, V.C. Rapid land use change after socio-economic disturbances: The collapse of the soviet Union versus Chernobyl. Environ. Res. Lett. 2011, 6, 67–81. [Google Scholar] [CrossRef]
- Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the pan-third pole region. Sci. Total Environ. 2020, 750, 141270. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ji, W.; Guo, Q.H.; Ke, J.H.; Tao, S. Variation in a satellite-based vegetation index in relation to climate in China. J. Veg. Sci. 2004, 15, 219–226. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Schwartz, M.; Zhu, W.Q.; Wan, Y.F.; Qin, X.B.; Ma, X.; Liu, S.; Williamson, M.; Peters, C.; Li, Y. Changes in global grassland productivity during 1982 to 2011 attributable to climatic factors. Remote Sens. 2016, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the northern hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 2007, 21, 1–11. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Zhou, L.; Kaufmann, R.K.; Tian, Y.; Myneni, R.B.; Tucker, C.J. Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. J. Geophys. Res. Earth Surf. 2003, 108, ACL 3-1–ACL 3-16. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.L.; Du, S.P.; Li, F.Y.; Ding, Y.B. Study of mesoscale NDVI prediction models in arid and semiarid regions of China under changing environments. Ecol. Indic. 2021, 131, 108198. [Google Scholar] [CrossRef]
- Ren, K.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.Y.; Cheng, L.Y.; Fang, W.; Li, P. A nature-based reservoir optimization model for resolving the conflict in human water demand and riverine ecosystem protection. J. Clean. Prod. 2019, 231, 406–418. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Gao, J.G.; Liu, L.S.; Wang, Z.F.; Ding, M.J.; Yang, X.C. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Glob. Planet. Chang. 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huete, A.R.; Chen, J.; Chen, Y.H.; Li, J.; Yan, G.G.; Zhang, X.Y. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
Theil-Sen | MK Significance Test | Change Levels | Theil-Sen | MK Significance Test | Change Levels |
---|---|---|---|---|---|
Slope ≤ −0.0005 | Z ≤ −1.96 | Serious degradation | Slope ≥ 0.005 | −1.96 < Z < 19.6 | Mild improvement |
Slope ≤ −0.0005 | −1.96 < Z < 19.6 | Slight degradation | Slope ≥ 0.005 | Z > 1.96 | Obvious improvement |
−0.0005 < Slope < 0.0005 | −1.96 < Z < 19.6 | Unchange |
Slope(FVCobs) | Driving Forces | Criteria for Classifying Driving Factors | |
---|---|---|---|
Slope(FVCCC) | Slope(FVCHA) | ||
>0 | CC & HA | >0 | >0 |
CC | >0 | <0 | |
HA | <0 | >0 | |
<0 | CC & HA | <0 | <0 |
CC | <0 | >0 | |
HA | >0 | <0 |
Region | Serious Degradation (%) | Slight Degradation (%) | Unchanged (%) | Mild Improvement (%) | Obvious Improvement (%) |
---|---|---|---|---|---|
SEAS | 8.24 | 8.08 | 67.22 | 8.28 | 8.19 |
EAS | 13.71 | 10.63 | 43.21 | 12.66 | 19.79 |
RUS | 14.71 | 14.16 | 28.56 | 14.98 | 27.59 |
CEU | 6.32 | 17.42 | 25.22 | 23.06 | 27.98 |
SAS | 6.42 | 8.12 | 33.67 | 17.81 | 33.98 |
WAS | 9.87 | 3.65 | 55.85 | 6.37 | 24.26 |
CAS | 14.96 | 15.87 | 38.79 | 15.72 | 14.66 |
Regions | Slope (FVCobs) | Effect on Vegetation Restoration | Driving Factors | |
---|---|---|---|---|
CC | HA | |||
SAS | 0.0078 | Promote | Promote | CC&HA |
CEU | 0.0061 | Promote | Repressive | CC |
WAS | 0.0033 | Promote | Promote | CC&HA |
SEAS | 0.0004 | Repressive | Promote | HA |
EAS | 0.0012 | Promote | Repressive | CC |
CAS | 0.0002 | Promote | Repressive | CC |
RUS | 0.0022 | Promote | Promote | CC&HA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yang, Q.; Yang, M. Spatio-Temporal Patterns and Driving Factors of Vegetation Change in the Pan-Third Pole Region. Remote Sens. 2022, 14, 4402. https://doi.org/10.3390/rs14174402
Yang X, Yang Q, Yang M. Spatio-Temporal Patterns and Driving Factors of Vegetation Change in the Pan-Third Pole Region. Remote Sensing. 2022; 14(17):4402. https://doi.org/10.3390/rs14174402
Chicago/Turabian StyleYang, Xuyan, Qinke Yang, and Miaomiao Yang. 2022. "Spatio-Temporal Patterns and Driving Factors of Vegetation Change in the Pan-Third Pole Region" Remote Sensing 14, no. 17: 4402. https://doi.org/10.3390/rs14174402
APA StyleYang, X., Yang, Q., & Yang, M. (2022). Spatio-Temporal Patterns and Driving Factors of Vegetation Change in the Pan-Third Pole Region. Remote Sensing, 14(17), 4402. https://doi.org/10.3390/rs14174402