Assessing the Potential of IMERG and TMPA Satellite Precipitation Products for Flood Simulations and Frequency Analyses over a Typical Humid Basin in South China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Satellite Precipitation Products
2.3. Gauged Precipitation and Discharge Data
3. Methodology
3.1. Xinanjiang Model
3.2. Flood Frequency Analysis
3.3. Evaluation Metrics
4. Result
4.1. Evaluation of Precipitation Estimations
4.1.1. Evaluation of the Daily Precipitation Estimations
4.1.2. Evaluation of Heavy Precipitation Events
4.2. Evaluation of the Hydrological Utility
4.2.1. Evaluation of the Daily Streamflow Simulations
4.2.2. Evaluation of the Hourly Flood Event Simulations
4.3. Evaluation of the Flood Frequency Analysis
5. Discussion
5.1. Comparison of the Accuracy of the SPPs
5.2. Analysis of the Hydrological Utility of SPPs
6. Conclusions
- IMERG-F achieved the highest daily precipitation accuracy among the five SPPs, with the highest CC (0.71), the lowest RMSE (8.7), and the best POD (0.87). Thus, when evaluating heavy precipitation events, IMERG products can more accurately reflect the precipitation process than TMPA products, especially for near real-time products. IMERG-L achieved a higher CC and a smaller RMSE and deviation. 3B42RT showed a significant error in rainfall estimation. The improvement of 3B42V7 compared with 3B42RT was limited, and the error in some events was even more unsatisfactory than 3B42RT;
- The errors of the five SPPs evaluated under different precipitation intensities showed an overestimation of light precipitation and an underestimation of heavy precipitation. The underestimation increased with an increasing rain intensity. When the rainfall intensity was greater than 100 mm/day, all the five SPPs underestimated the precipitation from 46.1 mm to 76.5 mm, indicating a severe underestimation of the satellite products during heavy rainfall events. IMERG-L performed the best, with the least amount of devaluation. In contrast, after correction for monthly precipitation data, the post real-time products 3B42V7 and IMERG-F showed a greater deviation than their near real-time counterparts;
- For the daily runoff simulations, the DC values of the IMERG-F product in the calibration and validation periods were 0.63 and 0.55, respectively, with a CC of 0.79 and 0.76, respectively, and a deviation of 0.4%, which was the best among the five sets of precipitation products. 3B42V7 tended to underestimate the runoff, and both the calibration period and the validation period were negatively biased. The DC of the 3B42RT product was 0.51 in the calibration period and 0.29 in the validation period, achieving the poorest accuracy;
- For the evaluation of the flood simulations, among the post real-time products, IMERG-F performed better than 3B42V7 in most flood simulations and was more consistent with the hydrographs of the measured flow. Furthermore, the peak flow was also closer to the measured value, with an average DC of 0.83. Among the near real-time SPPs, IMERG-L performed better than IMERG-E and 3B42RT in most flood events, with an average DC of 0.81;
- Regarding the flood frequency analysis, the five sets of SPPs all underestimated extreme floods, and the average flood peaks were lower than the observed values. The SPPs tended to overestimate floods with shorter return periods, and gradually shifted to overestimating floods as the return periods increased. Among them, IMERG-L achieved the best performance. Compared with the measured flow design flood results, the bias in the return period of 2–100 years was within 15%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Hong, Y.; Yong, B.; Yang, X.; Yuan, F.; Ma, M. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol. 2012, 452, 213–225. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (Gpm) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Liu, D.; Yong, B.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.; Hong, Y. Global View of Real-Time Trmm Multisatellite Precipitation Analysis: Implications for Its Successor Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2015, 96, 283–296. [Google Scholar] [CrossRef]
- Wei, L.Y.; Jiang, S.H.; Ren, L.L.; Wang, M.H.; Zhang, L.Q.; Liu, Y.; Yuan, F.; Yang, X.L. Evaluation of seventeen satellite-, reanalysis-, and gauge-based precipitation products for drought monitoring across mainland China. Atmos. Res. 2021, 263, 105813. [Google Scholar] [CrossRef]
- Hou, S.; Tian, F.; Yang, L.; Hu, H.; Hou, A. How Does the Evaluation of the GPM IMERG Rainfall Product Depend on Gauge Density and Rainfall Intensity? J. Hydrometeorol. 2018, 19, 339–349. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmos. Res. 2018, 206, 46–63. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Wolff, D.B.; Nelkin, E.J.; Bolvin, D.T.; Huffman, G.J.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the Morphing Algorithm. J. Atmos. Ocean. Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Jiang, S.; Wei, L.; Ren, L.; Xu, C.-Y.; Zhong, F.; Wang, M.; Zhang, L.; Yuan, F.; Liu, Y. Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China. Atmos. Res. 2021, 247, 105141. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Hsu, J.; Huang, W.R.; Liu, P.Y. Performance assessment of GPM-based near-real-time satellite products in depicting diurnal precipitation variation over Taiwan. J. Hydrol. Reg. Stud. 2021, 38, 100957. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Win, K.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar. Remote Sens. 2017, 9, 302. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, F.; Liu, S.; Xu, C.-Y.; Ren, L.; Jiang, S. Quantifying multi-source uncertainties in multi-model predictions using the Bayesian model averaging scheme. Hydrol. Res. 2018, 49, 954–970. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Qin, Z.; Zheng, Y.; Guo, J. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau. J. Meteorol. Res. 2018, 32, 324–336. [Google Scholar] [CrossRef]
- Jiang, L.; Bauer-Gottwein, P. How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [Google Scholar] [CrossRef]
- Le, M.-H.; Lakshmi, V.; Bolten, J.; Bui, D.D. Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, D.; Luo, Y.; Xu, Y.-P.; Wang, G.; Gao, X. Suitability of high-temporal satellite-based precipitation products in flood simulation over a humid region of China. Hydrol. Sci. J. 2020, 66, 104–117. [Google Scholar] [CrossRef]
- Zhu, S.; Shen, Y.; Ma, Z. A New Perspective for Charactering the Spatio-temporal Patterns of the Error in GPM IMERG Over Mainland China. Earth Space Sci. 2021, 8, e2020EA001232. [Google Scholar] [CrossRef]
- Dos Santos, V.; Oliveira, R.A.J.; Datok, P.; Sauvage, S.; Paris, A.; Gosset, M.; Sánchez-Pérez, J.M. Evaluating the performance of multiple satellite-based precipitation products in the Congo River Basin using the SWAT model. J. Hydrol. Reg. Stud. 2022, 42, 101168. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Soe, K.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Applications of TRMM- and GPM-Era Multiple-Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Myanmar. Remote Sens. 2019, 11, 140. [Google Scholar] [CrossRef]
- Zhao, R. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Liou, J.-J.; Su, Y.-F.; Cheng, K.-S. Establishing acceptance regions for L-moments based goodness-of-fit tests for the Pearson type III distribution. Stoch. Environ. Res. Risk Assess. 2011, 26, 873–885. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. The effect of intersite dependence on regional flood frequency analysis. Water Resour. Res. 1988, 24, 588–600. [Google Scholar] [CrossRef]
- Igor, L.; Urošev, M.; Dolinaj, D.; Pantelić, M.; Telbisz, T.; Varga, G.; Savić, S.; Milošević, D. Regional Flood Frequency Analysis Based on L-Moment Approach (Case Study Tisza River Basin). Water Resour. 2019, 46, 853–860. [Google Scholar] [CrossRef]
- Saf, B. Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey. Water Resour. Manag. 2008, 23, 531–551. [Google Scholar] [CrossRef]
- Hydrology Bureau of Yangtze River Water Conservancy Commission, Ministry of Water Resources. Regulation for Calculating Design Flood of Water Resources and Hydropower Projects. Minist. Water Resour. 2006, 99, SL44-2006. [Google Scholar]
- Lang, M.; Ouarda, T.; Bobee, B. Towards operational guidelines for over-threshold modeling. J. Hydrol. 1999, 225, 103–117. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Gao, Z.; Long, D.; Tang, G.; Zeng, C.; Huang, J.; Hong, Y. Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China’s Yangtze River basin. J. Hydrol. 2017, 550, 478–496. [Google Scholar] [CrossRef]
- Guo, X.; Long, D.; Zeng, Z.; Tang, G.; Yong, B.; Zhang, W.; Hong, Y. Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7? J. Hydrometeorol. 2016, 17, 121–137. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Xu, C.-Y.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and hydrological evaluation of the latest Integrated Multi-satellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in South China. Atmos. Res. 2018, 214, 418–429. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, J.; She, D.; Zhang, X.; Liu, J.; Zhang, Y. Assessment of four latest long-term satellite-based precipitation products in capturing the extreme precipitation and streamflow across a humid region of southern China. Atmos. Res. 2021, 257, 105554. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, B.; Shi, C.; Cui, W.; Zhao, C.; Liu, Y.; Ren, L.; Zhang, L.; Zhu, Y.; Chen, T.; et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. 2018, 567, 696–711. [Google Scholar] [CrossRef]
- Nan, L.; Yang, M.; Wang, H.; Xiang, Z.; Hao, S. Comprehensive Evaluation of Global Precipitation Measurement Mission (GPM) IMERG Precipitation Products over Mainland China. Water 2021, 13, 3381. [Google Scholar] [CrossRef]
- Su, J.; Li, X.; Ren, W.; Lü, H.; Zheng, D. How reliable are the satellite-based precipitation estimations in guiding hydrological modelling in South China? J. Hydrol. 2021, 602, 126705. [Google Scholar] [CrossRef]
Precipitation Product | CC | Bias (%) | RMSE (mm) | POD | FAR |
---|---|---|---|---|---|
3B42RT | 0.61 | −5.2 | 10.2 | 0.57 | 0.23 |
3B42V7 | 0.64 | −5.3 | 9.2 | 0.58 | 0.22 |
IMERG-E | 0.66 | −0.3 | 9.9 | 0.85 | 0.38 |
IMERG-L | 0.68 | 0.6 | 9.9 | 0.87 | 0.38 |
IMERG-F | 0.71 | −1.1 | 8.7 | 0.87 | 0.38 |
Precipitation Data | Calibration Period | Validation Period | ||||
---|---|---|---|---|---|---|
CC | DC | Bias (%) | CC | DC | Bias (%) | |
Gauge | 0.92 | 0.84 | 5.5 | 0.78 | 0.64 | 9.6 |
3B42RT | 0.71 | 0.51 | −6.0 | 0.70 | 0.29 | 7.8 |
3B42V7 | 0.75 | 0.54 | −2.1 | 0.66 | 0.45 | −0.8 |
IMERG-E | 0.74 | 0.53 | −0.1 | 0.62 | 0.50 | 5.7 |
IMERG-L | 0.75 | 0.53 | 2.1 | 0.61 | 0.50 | 6.7 |
IMERG-F | 0.79 | 0.63 | 0.4 | 0.76 | 0.55 | 0.4 |
Gauge | 3B42RT | 3B42V7 | IMERG-E | IMERG-L | IMERG-F | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REv (%) | REp (%) | ΔT | DC | REv (%) | REp (%) | ΔT | DC | REv (%) | REp (%) | ΔT | DC | REv (%) | REp (%) | ΔT | DC | REv (%) | REp (%) | ΔT | DC | REv (%) | REp (%) | ΔT | DC | |
20000901 | 11.2 | 13.5 | −2 | 0.94 | 20.9 | 29.1 | 0 | 0.85 | −30.8 | −25.8 | 1 | 0.81 | −42.4 | −43.2 | 0 | 0.6 | −7.8 | −1.5 | −1 | 0.94 | −11.6 | −8.5 | 0 | 0.87 |
20030515 | 5.8 | 18.2 | −1 | 0.9 | 35.2 | 36.5 | −1 | 0.85 | −36 | −31.4 | 0 | 0.64 | −18.7 | −12.1 | 0 | 0.81 | −16.7 | −2.5 | −2 | 0.87 | −15.2 | −2.7 | 0 | 0.85 |
20060616 | 4.4 | 6.6 | −3 | 0.95 | 8.1 | 26.9 | −5 | 0.83 | −19.5 | −22.8 | −9 | 0.86 | −31.8 | −35.8 | −1 | 0.65 | −11.3 | −4.8 | −1 | 0.84 | −12.7 | −10.7 | −2 | 0.83 |
20060715 | −7.7 | 6.9 | −8 | 0.9 | −50.1 | −55.9 | 14 | 0.25 | −59.2 | −55.2 | 2 | 0.31 | −41.5 | −22.2 | −2 | 0.5 | −30.7 | −1.3 | −2 | 0.56 | −38.3 | −14.2 | 0 | 0.52 |
20070819 | 19.3 | 20.9 | −3 | 0.92 | −37.8 | −72.6 | −19 | 0.21 | −3.1 | −33 | −19 | 0.4 | 16.7 | 13.9 | −3 | 0.96 | 20.9 | 21.1 | −7 | 0.89 | −4.2 | −14.8 | −7 | 0.89 |
20130514 | 7.9 | 15.6 | 2 | 0.93 | 24.5 | 58.6 | 9 | 0.08 | 9.5 | 27.2 | 3 | 0.78 | −35.5 | −30.1 | 3 | 0.61 | −26.2 | −28 | 9 | 0.79 | −14.4 | −19.4 | 2 | 0.88 |
20140525 | 9.8 | 17.6 | −4 | 0.86 | 6.5 | 30.7 | −4 | 0.77 | −0.8 | 1.3 | −7 | 0.87 | −52.3 | −52.9 | −6 | 0.45 | 12.4 | 20 | −6 | 0.82 | −5.2 | 3.3 | −3 | 0.91 |
20150630 | 20.2 | 19.4 | −3 | 0.68 | 15.6 | 28.5 | −1 | 0.61 | 19.3 | 25.8 | −1 | 0.74 | 18.6 | 29.7 | −3 | 0.66 | 14.8 | 19.7 | −2 | 0.79 | 3.2 | 5.5 | −2 | 0.89 |
Data | Parameter | Return Period | ||||||
---|---|---|---|---|---|---|---|---|
(m3/s) | Cv | Cs/Cv | 2 | 5 | 10 | 50 | 100 | |
Observed | 3071.7 | 0.48 | 2.0 | 2839 | 4196 | 5047 | 6794 | 7490 |
Gauge | 2372.6 | 0.61 | 2.0 | 2086 | 3429 | 4312 | 6185 | 6949 |
TMPART | 2319.1 | 0.41 | 3.0 | 2100 | 2985 | 3589 | 4904 | 5449 |
TMPAV7 | 2048.9 | 0.35 | 4.0 | 1887 | 2555 | 3007 | 3989 | 4395 |
IMERG-E | 2656.6 | 0.40 | 3.5 | 2417 | 3406 | 4077 | 5532 | 6133 |
IMERG-L | 2848.2 | 0.42 | 3.5 | 2566 | 3680 | 4445 | 6116 | 6811 |
IMERG-F | 2151.9 | 0.38 | 4.0 | 1953 | 2714 | 3242 | 4401 | 4885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Ding, Y.; Liu, R.; Wei, L.; Liu, Y.; Ren, M.; Ren, L. Assessing the Potential of IMERG and TMPA Satellite Precipitation Products for Flood Simulations and Frequency Analyses over a Typical Humid Basin in South China. Remote Sens. 2022, 14, 4406. https://doi.org/10.3390/rs14174406
Jiang S, Ding Y, Liu R, Wei L, Liu Y, Ren M, Ren L. Assessing the Potential of IMERG and TMPA Satellite Precipitation Products for Flood Simulations and Frequency Analyses over a Typical Humid Basin in South China. Remote Sensing. 2022; 14(17):4406. https://doi.org/10.3390/rs14174406
Chicago/Turabian StyleJiang, Shanhu, Yu Ding, Ruolan Liu, Linyong Wei, Yating Liu, Mingming Ren, and Liliang Ren. 2022. "Assessing the Potential of IMERG and TMPA Satellite Precipitation Products for Flood Simulations and Frequency Analyses over a Typical Humid Basin in South China" Remote Sensing 14, no. 17: 4406. https://doi.org/10.3390/rs14174406
APA StyleJiang, S., Ding, Y., Liu, R., Wei, L., Liu, Y., Ren, M., & Ren, L. (2022). Assessing the Potential of IMERG and TMPA Satellite Precipitation Products for Flood Simulations and Frequency Analyses over a Typical Humid Basin in South China. Remote Sensing, 14(17), 4406. https://doi.org/10.3390/rs14174406