Creation of Wildfire Susceptibility Maps in Plumas National Forest Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SAR Datasets
2.3. Wildfire Conditioning Factors
2.4. Damage Proxy Map (DPM)
2.5. Spatial Correlation Analysis
2.6. Convolutional Neural Network (CNN)
2.7. Metaheuristic Optimization Algorithms
2.7.1. Grey Wolf Optimization (GWO)
2.7.2. Imperialist Competitive Algorithms (ICA)
2.8. Accuracy Assessment
3. Results
3.1. Wildfire Damage Inventory Map
3.2. Relationship between Damage Area and Related Factors
3.3. Wildfire Susceptibility Map
3.4. Model Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Porter, T.W.; Crowfoot, W.; Newsom, G. 2020 Wildfire Activity Statistics; California Department of Forestry and Fire Protection: Sacramento, CA, USA, 2019; p. 46. [Google Scholar]
- Li, S.; Banerjee, T. Spatial and Temporal Pattern of Wildfires in California from 2000 to 2019. Sci. Rep. 2021, 11, 8779. [Google Scholar] [CrossRef] [PubMed]
- Nauman, B.C. Variability in California’s Fire Activity during the Holocene, across Space and Time; University of California: Los Angeles, CA, USA, 2020. [Google Scholar]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid Growth of the US Wildland-Urban Interface Raises Wildfire Risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed]
- CAL FIRE Stats and Events. Available online: https://www.fire.ca.gov/stats-events/ (accessed on 10 January 2022).
- Wong, S.D.; Broader, J.C.; Shaseen, S.A. Review of California Wildfire Evacuations from 2017 to 2019; University of California: Berkeley, CA, USA, 2020. [Google Scholar]
- Luo, N.; Weng, W.; Xu, X.; Hong, T.; Fu, M.; Sun, K. Assessment of Occupant-Behavior-Based Indoor Air Quality and Its Impacts on Human Exposure Risk: A Case Study Based on the Wildfires in Northern California. Sci. Total Environ. 2019, 686, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire Smoke Impacts Respiratory Health More than Fine Particles from Other Sources: Observational Evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef]
- Buis, A.; The Climate Connections of a Record Fire Year in the U.S. West. Available online: https://climate.nasa.gov/ask-nasa-climate/3066/the-climate-connections-of-a-record-fire-year-in-the-us-west/ (accessed on 4 April 2022).
- Tonini, M.; D’andrea, M.; Biondi, G.; Esposti, S.D.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105. [Google Scholar] [CrossRef]
- Bustillo Sánchez, M.; Tonini, M.; Mapelli, A.; Fiorucci, P. Spatial Assessment of Wildfires Susceptibility in Santa Cruz (Bolivia) Using Random Forest. Geosciences 2021, 11, 224. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Pham, B.T. Wildfire Spatial Pattern Analysis in the Zagros Mountains, Iran: A Comparative Study of Decision Tree Based Classifiers. Ecol. Inform. 2018, 43, 200–211. [Google Scholar] [CrossRef]
- Saim, A.A.; Aly, M.H. Machine Learning for Modeling Wildfire Susceptibility at the State Level: An Example from Arkansas, USA. Geographies 2022, 2, 31–47. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Kamran, K.V.; Blaschke, T.; Aryal, J.; Naboureh, A.; Einali, J.; Bian, J. Spatial Prediction of Wildfire Susceptibility Using Field Survey Gps Data and Machine Learning Approaches. Fire 2019, 2, 43. [Google Scholar] [CrossRef]
- Piralilou, S.T.; Einali, G.; Ghorbanzadeh, O.; Nachappa, T.G.; Gholamnia, K.; Blaschke, T.; Ghamisi, P. A Google Earth Engine Approach for Wildfire Susceptibility Prediction Fusion with Remote Sensing Data of Different Spatial Resolutions. Remote Sens. 2022, 14, 672. [Google Scholar] [CrossRef]
- Hong, H.; Jaafari, A.; Zenner, E.K. Predicting Spatial Patterns of Wildfire Susceptibility in the Huichang County, China: An Integrated Model to Analysis of Landscape Indicators. Ecol. Indic. 2019, 101, 878–891. [Google Scholar] [CrossRef]
- Zhang, P.; Nascetti, A.; Ban, Y.; Gong, M. An Implicit Radar Convolutional Burn Index for Burnt Area Mapping with Sentinel-1 C-Band SAR Data. ISPRS J. Photogramm. Remote Sens. 2019, 158, 50–62. [Google Scholar] [CrossRef]
- Nur, A.S.; Lee, C. Damage Proxy Map (DPM) of the 2016 Gyeongju and 2017 Pohang Earthquakes Using Sentinel-1 Imagery. Korean J. Remote Sens. 2021, 37, 13–22. [Google Scholar] [CrossRef]
- Tay, C.W.J.; Yun, S.-H.; Chin, S.T.; Bhardwaj, A.; Jung, J.; Hill, E.M. Rapid Flood and Damage Mapping Using Synthetic Aperture Radar in Response to Typhoon Hagibis, Japan. Sci. Data 2020, 7, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Biass, S.; Jenkins, S.; Lallemant, D.; Lim, T.N.; Williams, G.; Yun, S.-H. Remote Sensing of Volcanic Impacts. In Forecasting and Planning for Volcanic Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2021; pp. 473–491. [Google Scholar]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest Fire Susceptibility Mapping in the Minudasht Forests, Golestan Province, Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [Google Scholar] [CrossRef]
- Jaafari, A.; Gholami, D.M. Wildfire Hazard Mapping Using an Ensemble Method of Frequency Ratio with Shannon’s Entropy. Iran. J. For. Poplar Res. 2017, 25, 232–242. [Google Scholar]
- Nami, M.H.; Jaafari, A.; Fallah, M.; Nabiuni, S. Spatial Prediction of Wildfire Probability in the Hyrcanian Ecoregion Using Evidential Belief Function Model and GIS. Int. J. Environ. Sci. Technol. 2018, 15, 373–384. [Google Scholar] [CrossRef]
- Jaafari, A.; Gholami, D.M.; Zenner, E.K. A Bayesian Modeling of Wildfire Probability in the Zagros Mountains, Iran. Ecol. Inform. 2017, 39, 32–44. [Google Scholar] [CrossRef]
- Nikhil, S.; Danumah, J.H.; Saha, S.; Prasad, M.K.; Rajaneesh, A.; Mammen, P.C.; Ajin, R.S.; Kuriakose, S.L. Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: A Study of the Parambikulam Tiger Reserve, Kerala, India. J. Geovis. Spat. Anal. 2021, 5, 14. [Google Scholar] [CrossRef]
- Busico, G.; Giuditta, E.; Kazakis, N.; Colombani, N. A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role. Sustainability 2019, 11, 7166. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A Comprehensive Spatial-Temporal Analysis of Driving Factors of Human-Caused Wildfires in Spain Using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 225, 177–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari Goldarag, Y.; Mohammadzadeh, A.; Ardakani, A.S. Fire Risk Assessment Using Neural Network and Logistic Regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [Google Scholar] [CrossRef]
- Gholamnia, K.; Nachappa, T.G.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry 2020, 12, 604. [Google Scholar] [CrossRef]
- Al-Fugara, A.; Mabdeh, A.N.; Ahmadlou, M.; Pourghasemi, H.R.; Al-Adamat, R.; Pradhan, B.; Al-Shabeeb, A.R. Wildland Fire Susceptibility Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Whale Optimization Algorithm and Simulated Annealing. ISPRS Int. J. Geoinf. 2021, 10, 382. [Google Scholar] [CrossRef]
- Gigović, L.; Pourghasemi, H.R.; Drobnjak, S.; Bai, S. Testing a New Ensemble Model Based on SVM and Random Forest in Forest Fire Susceptibility Assessment and Its Mapping in Serbia’s Tara National Park. Forests 2019, 10, 408. [Google Scholar] [CrossRef]
- Nguyen, H.D. Hybrid Models Based on Deep Learning Neural Network and Optimization Algorithms for the Spatial Prediction of Tropical Forest Fire Susceptibility in Nghe An Province, Vietnam. Geocarto Int. 2022, 2022, 1–25. [Google Scholar] [CrossRef]
- Bjånes, A.; De La Fuente, R.; Mena, P. A Deep Learning Ensemble Model for Wildfire Susceptibility Mapping. Ecol. Inform. 2021, 65, 101397. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.-W.; Lee, S. Convolutional Neural Network (CNN) with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Balogun, A.L.; Rezaie, F.; Pham, Q.B.; Gigović, L.; Drobnjak, S.; Aina, Y.A.; Panahi, M.; Yekeen, S.T.; Lee, S. Spatial Prediction of Landslide Susceptibility in Western Serbia Using Hybrid Support Vector Regression (SVR) with GWO, BAT and COA Algorithms. Geosci. Front. 2021, 12, 101104. [Google Scholar] [CrossRef]
- Ranjgar, B.; Razavi-Termeh, S.V.; Foroughnia, F.; Sadeghi-Niaraki, A.; Perissin, D. Land Subsidence Susceptibility Mapping Using Persistent Scatterer SAR Interferometry Technique and Optimized Hybrid Machine Learning Algorithms. Remote Sens. 2021, 13, 1326. [Google Scholar] [CrossRef]
- Tien Bui, D.; Khosravi, K.; Li, S.; Shahabi, H.; Panahi, M.; Singh, V.; Chapi, K.; Shirzadi, A.; Panahi, S.; Chen, W.; et al. New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water 2018, 10, 1210. [Google Scholar] [CrossRef]
- Dong, L.; Leung, L.R.; Qian, Y.; Zou, Y.; Song, F.; Chen, X. Meteorological Environments Associated With California Wildfires and Their Potential Roles in Wildfire Changes During 1984–2017. J. Geophys. Res. Atmos. 2021, 126, e2020JD033180. [Google Scholar] [CrossRef]
- Malik, A.; Rao, M.R.; Puppala, N.; Koouri, P.; Thota, V.A.K.; Liu, Q.; Chiao, S.; Gao, J. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Baltar, M.; Keeley, J.E.; Schoenberg, F.P. County-Level Analysis of the Impact of Temperature and Population Increases on California Wildfire Data. Environmetrics 2014, 25, 397–405. [Google Scholar] [CrossRef]
- Jin, Y.; Goulden, M.L.; Faivre, N.; Veraverbeke, S.; Sun, F.; Hall, A.; Hand, M.S.; Hook, S.; Randerson, J.T. Identification of Two Distinct Fire Regimes in Southern California: Implications for Economic Impact and Future Change. Environ. Res. Lett. 2015, 10, 094005. [Google Scholar] [CrossRef]
- Sulova, A.; Arsanjani, J.J. Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sens. 2020, 13, 10. [Google Scholar] [CrossRef]
- Sazib, N.; Bolten, J.D.; Mladenova, I.E. Leveraging NASA Soil Moisture Active Passive for Assessing Fire Susceptibility and Potential Impacts over Australia and California. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 779–787. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid Artificial Intelligence Models Based on a Neuro-Fuzzy System and Metaheuristic Optimization Algorithms for Spatial Prediction of Wildfire Probability. Agric. For. Meteorol. 2019, 266–267, 198–207. [Google Scholar] [CrossRef]
- Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive Modeling of Wildfires: A New Dataset and Machine Learning Approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Eskandari, S.; Pourghasemi, H.R.; Tiefenbacher, J.P. Fire-Susceptibility Mapping in the Natural Areas of Iran Using New and Ensemble Data-Mining Models. Environ. Sci. Pollut. Res. 2021, 28, 47395–47406. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Sachdeva, S.; Bhatia, T.; Verma, A.K. GIS-Based Evolutionary Optimized Gradient Boosted Decision Trees for Forest Fire Susceptibility Mapping. Nat. Hazards 2018, 92, 1399–1418. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E.; Aguado, I.; Dimitrakopoulos, A.P. Conversion of Fuel Moisture Content Values to Ignition Potential for Integrated Fire Danger Assessment. Can. J. For. Res. 2004, 34, 2284–2293. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, S.; Sharples, J.J. Wildfire Occurrence Patterns in Ecoregions of New South Wales and Australian Capital Territory, Australia. Nat. Hazards 2017, 87, 415–435. [Google Scholar] [CrossRef]
- Tien Bui, D.; Bui, Q.T.; Nguyen, Q.P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A Hybrid Artificial Intelligence Approach Using GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at a Tropical Area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar] [CrossRef]
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Porensky, L.M.; Derner, J.D.; Pellatz, D.W. Plant Community Responses to Historical Wildfire in a Shrubland–Grassland Ecotone Reveal Hybrid Disturbance Response. Ecosphere 2018, 9, e02363. [Google Scholar] [CrossRef]
- Hough, S.E.; Yun, S.-H.; Jung, J.; Thompson, E.; Parker, G.A.; Stephenson, O. Near-Field Ground Motions and Shaking from the 2019 Mw 7.1 Ridgecrest, California, Mainshock: Insights from Instrumental, Macroseismic Intensity, and Remote-Sensing Data. Bull. Seismol. Soc. Am. 2020, 110, 1506–1516. [Google Scholar] [CrossRef]
- Agapiou, A. Damage Proxy Map of the Beirut Explosion on 4th of August 2020 as Observed from the Copernicus Sensors. Sensors 2020, 20, 6382. [Google Scholar] [CrossRef]
- Han, J.; Nur, A.; Syifa, M.; Ha, M.; Lee, C.-W.; Lee, K.-Y. Improvement of Earthquake Risk Awareness and Seismic Literacy of Korean Citizens through Earthquake Vulnerability Map from the 2017 Pohang Earthquake, South Korea. Remote Sens. 2021, 13, 1365. [Google Scholar] [CrossRef]
- Yun, S.-H.; Hudnut, K.; Owen, S.; Webb, F.; Simons, M.; Sacco, P.; Gurrola, E.; Manipon, G.; Liang, C.; Fielding, E.; et al. Rapid Damage Mapping for the 2015 Mw 7.8 r Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites. Seismol. Res. Lett. 2015, 86, 1549–1556. [Google Scholar] [CrossRef]
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance Evaluation of the GIS-Based Data Mining Techniques of Best-First Decision Tree, Random Forest, and Naïve Bayes Tree for Landslide Susceptibility Modeling. Sci. Total Environ. 2018, 644, 1006–1018. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.-X. Modeling Landslide Susceptibility Using LogitBoost Alternating Decision Trees and Forest by Penalizing Attributes with the Bagging Ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef]
- Chen, W.; Yan, X.; Zhao, Z.; Hong, H.; Bui, D.T.; Pradhan, B. Spatial Prediction of Landslide Susceptibility Using Data Mining-Based Kernel Logistic Regression, Naive Bayes and RBFNetwork Models for the Long County Area (China). Bull. Eng. Geol. Environ. 2019, 78, 247–266. [Google Scholar] [CrossRef]
- Arabameri, A.; Asadi Nalivan, O.; Chandra Pal, S.; Chakrabortty, R.; Saha, A.; Lee, S.; Pradhan, B.; Tien Bui, D. Novel Machine Learning Approaches for Modelling the Gully Erosion Susceptibility. Remote Sens. 2020, 12, 2833. [Google Scholar] [CrossRef]
- Kadavi, P.R.; Lee, C.W.; Lee, S. Landslide-Susceptibility Mapping in Gangwon-Do, South Korea, Using Logistic Regression and Decision Tree Models. Environ. Earth Sci. 2019, 78, 116. [Google Scholar] [CrossRef]
- Pradhan, B.; Abokharima, M.H.; Jebur, M.N.; Tehrany, M.S. Land Subsidence Susceptibility Mapping at Kinta Valley (Malaysia) Using the Evidential Belief Function Model in GIS. Nat. Hazards 2014, 73, 1019–1042. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Lee, S. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. Catena 2020, 186, 104249. [Google Scholar] [CrossRef]
- Panahi, M.; Sadhasivam, N.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial Prediction of Groundwater Potential Mapping Based on Convolutional Neural Network (CNN) and Support Vector Regression (SVR). J. Hydrol. 2020, 588, 125033. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, B.; Xu, Z.; Peng, D.; Zuo, D. Urban Flood Susceptibility Assessment Based on Convolutional Neural Networks. J. Hydrol. 2020, 590, 125235. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Dikshit, A.; Al-Katheri, M.M.; Matar, S.S.; Mahdi, A.M. Landslide Susceptibility Mapping Using CNN-1D and 2D Deep Learning Algorithms: Comparison of Their Performance at Asir Region, KSA. Bull. Eng. Geol. Environ. 2022, 81, 165. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Golkarian, A.; Keesstra, S.D.; Saco, P.M.; Bui, D.T.; Lee, S. Convolutional Neural Network Approach for Spatial Prediction of Flood Hazard at National Scale of Iran. J. Hydrol. 2020, 591, 125552. [Google Scholar] [CrossRef]
- Thi Ngo, P.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of Deep Learning Algorithms for National Scale Landslide Susceptibility Mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar] [CrossRef]
- Lee, S.; Rezaie, F. Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea. Proc. Natl. Inst. Ecol. Repub. Korea 2021, 2, 1–4. [Google Scholar] [CrossRef]
- Hakim, W.L.; Nur, A.S.; Rezaie, F.; Panahi, M.; Lee, C.W.; Lee, S. Convolutional Neural Network and Long Short-Term Memory Algorithms for Groundwater Potential Mapping in Anseong, South Korea. J. Hydrol. Reg. Stud. 2022, 39, 100990. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Moayedi, H.; Osouli, A.; Tien Bui, D.; Foong, L.K. Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles. Sensors 2019, 19, 4698. [Google Scholar] [CrossRef] [PubMed]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Panahi, M.; Khosravi, K.; Shirzadi, A.; Shahabi, H.; Panahi, S.; Costache, R. Flood Susceptibility Mapping in Dingnan County (China) Using Adaptive Neuro-Fuzzy Inference System with Biogeography Based Optimization and Imperialistic Competitive Algorithm. J. Environ. Manag. 2019, 247, 712–729. [Google Scholar] [CrossRef] [PubMed]
- Syifa, M.; Panahi, M.; Lee, C.-W. Mapping of Post-Wildfire Burned Area Using a Hybrid Algorithm and Satellite Data: The Case of the Camp Fire Wildfire in California, USA. Remote Sens. 2020, 12, 623. [Google Scholar] [CrossRef]
- Golkarian, A.; Naghibi, S.A.; Kalantar, B.; Pradhan, B. Groundwater Potential Mapping Using C5.0, Random Forest, and Multivariate Adaptive Regression Spline Models in GIS. Environ. Monit. Assess. 2018, 190, 149. [Google Scholar] [CrossRef]
- Fadhillah, M.F.; Lee, S.; Lee, C.-W.; Park, Y.-C. Application of Support Vector Regression and Metaheuristic Optimization Algorithms for Groundwater Potential Mapping in Gangneung-Si, South Korea. Remote Sens. 2021, 13, 1196. [Google Scholar] [CrossRef]
- Hakim, W.; Achmad, A.; Lee, C.-W. Land Subsidence Susceptibility Mapping in Jakarta Using Functional and Meta-Ensemble Machine Learning Algorithm Based on Time-Series InSAR Data. Remote Sens. 2020, 12, 3627. [Google Scholar] [CrossRef]
- Fadhillah, M.F.; Achmad, A.R.; Lee, C.-W. Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea. Remote Sens. 2020, 12, 3505. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Park, S.; Lee, C.W.; Lee, S. Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and Naïvebayes Machine-Learning Algorithms. Sustainability 2018, 10, 3697. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Amiri, M.; Edalat, M.; Ahrari, A.H.; Panahi, M.; Sadhasivam, N.; Lee, S. Assessment of Urban Infrastructures Exposed to Flood Using Susceptibility Map and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1923–1937. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.; Heilman, W. Wildland Fire Emissions, Carbon, and Climate: Wildfire–Climate Interactions. For. Ecol. Manag. 2014, 317, 80–96. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, C.W.; Lee, S.; Lee, M.J. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea. Remote Sens. 2018, 10, 1545. [Google Scholar] [CrossRef]
- Kadavi, P.; Lee, C.-W.; Lee, S. Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping. Remote Sens. 2018, 10, 1252. [Google Scholar] [CrossRef]
- Panahi, M.; Gayen, A.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial Prediction of Landslide Susceptibility Using Hybrid Support Vector Regression (SVR) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) with Various Metaheuristic Algorithms. Sci. Total Environ. 2020, 741, 139937. [Google Scholar] [CrossRef] [PubMed]
- Fielding, E.J.; Liu, Z.; Stephenson, O.L.; Zhong, M.; Liang, C.; Moore, A.; Yun, S.H.; Simons, M. Surface Deformation Related to the 2019 Mw7.1 and 6.4 Ridgecrest Earthquakes in California from GPS, SAR Interferometry, and SAR Pixel Offsets. Seismol. Res. Lett. 2020, 91, 2035–2046. [Google Scholar] [CrossRef]
- Dodangeh, E.; Panahi, M.; Rezaie, F.; Lee, S.; Tien Bui, D.; Lee, C.W.; Pradhan, B. Novel Hybrid Intelligence Models for Flood-Susceptibility Prediction: Meta Optimization of the GMDH and SVR Models with the Genetic Algorithm and Harmony Search. J. Hydrol. 2020, 590, 125423. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.M.C.; San-Miguel-Ayanz, J.; Lourenço, L. Exploring the Spatial Patterns of Fire Density in Southern Europe Using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Hanberry, B.B.; Bragg, D.C.; Alexander, H.D. Open Forest Ecosystems: An Excluded State. For. Ecol. Manag. 2020, 472, 118256. [Google Scholar] [CrossRef]
- Hanberry, B.B. Classifying Large Wildfires in the United States by Land Cover. Remote Sens. 2020, 12, 2966. [Google Scholar] [CrossRef]
- Parks, S.A.; Abatzoglou, J.T. Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests From 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Frankson, R.; Stevens, L.E.; Kunkel, K.E. California State Climate Summary 2022; Silver Spring: Montgomery, MD, USA, 2022. [Google Scholar]
- Kalantar, B.; Ueda, N.; Idrees, M.O.; Janizadeh, S.; Ahmadi, K.; Shabani, F. Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sens. 2020, 12, 3682. [Google Scholar] [CrossRef]
Causes | Lightning | Human-Caused | Miscellaneous | Unknown | ||
---|---|---|---|---|---|---|
Transportation | Human Activity | Construction | ||||
Number of wildfires | 25 | 3 | 18 | 6 | 8 | 10 |
Percentage | 35.71 | 4.29 | 25.71 | 8.57 | 11.43 | 14.29 |
Fire Name | Alarm Date(MM/DD/YYYY) | Burned Area (ha) | Pre-Event | Post-Event | Flight Direction | |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
North Complex | 08/17/2020 | 129,004 | 08/01/2020 | 08/13/2020 | 09/06/2020 | Desc |
Sheep | 08/17/2020 | 11,967 | 08/01/2020 | 08/13/2020 | 08/25/2020 | Desc |
Loyalton | 08/14/2020 | 19,032 | 08/01/2020 | 08/13/2020 | 09/06/2020 | Desc |
Walker | 09/04/2019 | 22,107 | 08/20/2019 | 09/01/2019 | 09/13/2019 | Asc |
Camp | 11/08/2018 | 62,053 | 10/23/2018 | 11/04/2018 | 11/16/2018 | Desc |
Cascade | 10/08/2017 | 4042 | 09/10/2017 | 10/04/2017 | 10/16/2017 | Desc |
Cherokee | 10/08/2017 | 3406 | 09/10/2017 | 10/04/2017 | 10/16/2017 | Desc |
Ponderosa | 08/29/2017 | 1625 | 08/06/2017 | 08/18/2017 | 09/11/2017 | Asc |
Minerva 5 | 07/29/2017 | 1744 | 07/01/2017 | 07/13/2017 | 08/06/2017 | Asc |
Wall | 07/07/2017 | 2441 | 06/18/2017 | 06/30/2017 | 07/12/2017 | Desc |
Saddle | 09/05/2016 | 344 | 080/5/2016 | 08/29/2016 | 09/22/2016 | Asc |
Category | Factors | Scale/Resolution | Source of Data | References |
---|---|---|---|---|
Topography | Aspect | 30 m | Copernicus DEM | [2] |
Altitude | [40] | |||
Slope | [16] | |||
Plan curvature | [14] | |||
Meteorological | Precipitation | 800 m | PRISM | [2] |
Maximum temperature | [39] | |||
Solar radiance | 4 km | NREL | [41] | |
Windspeed | 100 m | Global Wind Atlas | [42] | |
Environmental | Distance to stream | 1:5000 | California State Geoportal | [16] |
Drought index | 4 km | Terra Climate | [43] | |
Soil moisture | [44] | |||
NDVI | 375 m | MODIS | [39] | |
Topographic wetness index | 30 m | Copernicus DEM | [40] | |
Anthropological | Land use | 30 m | USGS | [2] |
Distance to road | [14] | |||
Distance to settlement | [41] |
Factor | IGR | Collinearity Statistics | |
---|---|---|---|
TOL | VIF | ||
Altitude | 0.17 | 0.17 | 5.91 |
Aspect | 0.06 | 0.98 | 1.02 |
Distance to stream | 0.06 | 0.99 | 1.01 |
Distance to road | 0.14 | 0.97 | 1.03 |
Distance to settlement | 0.03 | 0.68 | 1.47 |
Land use | 0.39 | 0.39 | 2.55 |
NDVI | 0.08 | 0.71 | 1.40 |
Drought index | 0.25 | 0.24 | 4.13 |
Plan curvature | 0.04 | 0.83 | 1.20 |
Precipitation | 0.04 | 0.39 | 2.57 |
Slope | 0.16 | 0.30 | 3.31 |
Soil moisture | 0.18 | 0.27 | 3.66 |
Solar | 0.12 | 0.41 | 2.49 |
Maximum temperature | 0.18 | 0.22 | 4.63 |
TWI | 0.16 | 0.53 | 1.90 |
Windspeed | 0.03 | 0.81 | 1.22 |
Factor | Class | Total % | Event % | Frequency Ratio |
---|---|---|---|---|
Aspect | North | 1.85 | 0.00 | 0.00 |
Northeast | 10.30 | 10.58 | 1.03 | |
East | 9.74 | 5.77 | 0.59 | |
Southeast | 11.31 | 12.82 | 1.13 | |
South | 12.56 | 13.78 | 1.10 | |
Southwest | 14.31 | 16.03 | 1.12 | |
West | 14.70 | 15.38 | 1.05 | |
Northwest | 13.99 | 13.14 | 0.94 | |
Flat | 11.25 | 12.50 | 1.11 | |
Altitude (m) | 13–272 | 19.83 | 20.51 | 1.03 |
272–1216 | 20.13 | 31.09 | 1.54 | |
1216–1525 | 19.43 | 16.99 | 0.87 | |
1525–1773 | 20.46 | 16.99 | 0.83 | |
1773–2549 | 20.15 | 14.42 | 0.72 | |
Distance to Road (m) | 0–60 | 21.26 | 16.35 | 0.77 |
60–152 | 20.13 | 13.46 | 0.67 | |
152–301 | 19.70 | 23.40 | 1.19 | |
301–595 | 19.47 | 22.12 | 1.14 | |
595–4260 | 19.44 | 24.68 | 1.27 | |
Distance to Settlement (m) | 0–287 | 17.90 | 12.82 | 0.72 |
287–1148 | 22.34 | 28.53 | 1.28 | |
1148–2679 | 20.25 | 26.28 | 1.30 | |
2679–5646 | 20.08 | 16.67 | 0.83 | |
5646–24,404 | 19.42 | 15.71 | 0.81 | |
Distance to stream (m) | 0–997 | 19.41 | 22.76 | 1.17 |
997–2160 | 20.14 | 24.04 | 1.19 | |
2160–3573 | 20.98 | 22.12 | 1.05 | |
3573–5651 | 19.75 | 15.71 | 0.80 | |
5651–21,192 | 19.72 | 15.38 | 0.78 | |
Land use | Open water | 2.19 | 0.08 | 0.04 |
Developed, open space | 1.80 | 1.07 | 0.59 | |
Developed, low intensity | 0.84 | 0.44 | 0.52 | |
Developed, medium intensity | 0.61 | 0.22 | 0.37 | |
Developed, high intensity | 0.18 | 0.06 | 0.32 | |
Deciduous forest | 0.48 | 0.20 | 0.41 | |
Evergreen forest | 52.09 | 56.72 | 1.09 | |
Mixed forest | 0.24 | 0.24 | 1.00 | |
Shrub/scrub | 19.34 | 18.02 | 0.93 | |
Herbaceous | 9.35 | 22.86 | 2.44 | |
Cultivated crops | 10.51 | 0.01 | 0.00 | |
Woody wetlands | 0.50 | 0.07 | 0.14 | |
Emergent herbaceous wetlands | 1.55 | 0.02 | 0.01 | |
Barren land | 0.06 | 0.00 | 0.00 | |
Hay/pasture | 0.26 | 0.00 | 0.00 | |
Drought index | −1.88–−0.83 | 19.46 | 18.91 | 0.97 |
−0.84–−0.32 | 20.38 | 18.59 | 0.91 | |
−0.33–−0.08 | 19.73 | 9.29 | 0.47 | |
−0.09–0.21 | 21.15 | 26.60 | 1.26 | |
0.21–0.89 | 19.28 | 26.60 | 1.38 | |
NDVI | 0–0.25 | 20.00 | 17.63 | 0.88 |
0.25–0.46 | 20.00 | 16.67 | 0.83 | |
0.46–0.61 | 20.01 | 20.83 | 1.04 | |
0.61–0.76 | 20.00 | 22.12 | 1.10 | |
0.76–1 | 19.98 | 22.76 | 1.14 | |
Plan curvature | Concave | 33.85 | 38.14 | 1.13 |
Flat | 16.10 | 11.86 | 0.74 | |
Convex | 50.05 | 50.00 | 1.00 | |
Precipitation (mm) | 13.93–25.21 | 20.01 | 17.31 | 0.87 |
25.21–33.72 | 20.00 | 24.68 | 1.23 | |
33.72–43.35 | 20.00 | 22.76 | 1.14 | |
43.35–67.25 | 20.00 | 19.55 | 0.98 | |
67.25–116.10 | 19.99 | 15.71 | 0.79 | |
Slope (degree) | 0–1.80 | 19.78 | 12.18 | 0.62 |
1.80–7.22 | 20.59 | 18.59 | 0.90 | |
7.22–12.89 | 19.97 | 21.15 | 1.06 | |
12.89–20.37 | 19.84 | 19.55 | 0.99 | |
20.37–65.75 | 19.82 | 28.53 | 1.44 | |
Soil moisture (mm) | 22.00–95.29 | 19.76 | 21.79 | 1.10 |
95.29–184.29 | 20.16 | 12.82 | 0.64 | |
184.29–252.35 | 19.98 | 15.71 | 0.79 | |
252.35–348.33 | 19.50 | 25.32 | 1.30 | |
348.33–467.00 | 20.60 | 24.36 | 1.18 | |
Solar | 6.14–6.38 | 21.09 | 27.24 | 1.29 |
6.38–6.55 | 21.23 | 27.88 | 1.31 | |
6.55–6.72 | 21.00 | 19.55 | 0.93 | |
6.72–6.84 | 18.50 | 12.50 | 0.68 | |
6.84–7.27 | 18.05 | 12.82 | 0.71 | |
Tmax (°C) | 52.07–59.07 | 20.06 | 12.82 | 0.64 |
59.07–61.84 | 20.01 | 15.71 | 0.78 | |
61.84–65.67 | 20.01 | 18.59 | 0.93 | |
65.67–74.11 | 19.97 | 30.13 | 1.51 | |
74.11–76.06 | 19.95 | 22.76 | 1.14 | |
TWI | 3.29–5.52 | 18.18 | 21.15 | 1.16 |
5.52–6.25 | 20.05 | 22.12 | 1.10 | |
6.25–7.27 | 20.88 | 21.47 | 1.03 | |
7.27–9.20 | 21.05 | 24.36 | 1.15 | |
9.20–26.31 | 19.84 | 10.90 | 0.55 | |
Windspeed (m/s) | 0.99–3.93 | 20.00 | 20.51 | 1.03 |
3.93–4.67 | 20.00 | 21.15 | 1.06 | |
4.67–5.29 | 20.00 | 20.19 | 1.00 | |
5.29–5.84 | 20.00 | 22.12 | 1.11 | |
5.84–11.89 | 20.00 | 16.03 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nur, A.S.; Kim, Y.J.; Lee, C.-W. Creation of Wildfire Susceptibility Maps in Plumas National Forest Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization Approaches. Remote Sens. 2022, 14, 4416. https://doi.org/10.3390/rs14174416
Nur AS, Kim YJ, Lee C-W. Creation of Wildfire Susceptibility Maps in Plumas National Forest Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization Approaches. Remote Sensing. 2022; 14(17):4416. https://doi.org/10.3390/rs14174416
Chicago/Turabian StyleNur, Arip Syaripudin, Yong Je Kim, and Chang-Wook Lee. 2022. "Creation of Wildfire Susceptibility Maps in Plumas National Forest Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization Approaches" Remote Sensing 14, no. 17: 4416. https://doi.org/10.3390/rs14174416
APA StyleNur, A. S., Kim, Y. J., & Lee, C. -W. (2022). Creation of Wildfire Susceptibility Maps in Plumas National Forest Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization Approaches. Remote Sensing, 14(17), 4416. https://doi.org/10.3390/rs14174416