Spatial Cross-Correlation of GOSAT CO2 Concentration with Repeated Heat Wave-Induced Photosynthetic Inhibition in Europe from 2009 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Variables for Building the GWR Model
2.3. Moran’s I Analysis
2.4. Building GWR Model
2.5. Mediation Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salomón, R.L.; Peters, R.L.; Zweifel, R.; Sass-Klaassen, U.G.W.; Stegehuis, A.I.; Smiljanic, M.; Poyatos, R.; Babst, F.; Cienciala, E.; Fonti, P.; et al. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.M.; Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 2014, 41, 547–554. [Google Scholar] [CrossRef]
- WMO. WMO Recognizes New Arctic Temperature Record of 38 °C. 2021. Available online: https://public.wmo.int/en/media/press-release/wmo-recognizes-new-arctic-temperature-record-of-38%E2%81%B0c#:~:text=GENEVA%2C%2014%20December%202%20021%20%20(WMO,%20World%20Meteorological%20Organization%20(WMO) (accessed on 15 May 2022).
- Della-Marta, P.M.; Haylock, M.R.; Luterbacher, J.; Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. Atmos. 2007, 112, D15103. [Google Scholar] [CrossRef]
- Poorter, H.; Larcher, W. Physiological Plant Ecology, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 93. [Google Scholar]
- Zhu, P.; Zhuang, Q.; Ciais, P.; Welp, L.; Li, W.; Xin, Q. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback. Geophys. Res. Lett. 2017, 44, 1956–1963. [Google Scholar] [CrossRef]
- Zellweger, C.; Steinbrecher, R.; Laurent, O.; Lee, H.; Kim, S.; Emmenegger, L.; Steinbacher, M.; Buchmann, B. Recent advances in measurement techniques for atmospheric carbon monoxide and nitrous oxide observations. Atmos. Meas. Tech. 2019, 12, 5863–5878. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, J.-S. Comparative evaluation of XCO2 concentration among climate types within India region using OCO-2 signatures. Spat. Inf. Res. 2016, 24, 679–688. [Google Scholar] [CrossRef]
- Hwang, Y.; Schlüter, S.; Choudhury, T.; Um, J.-S. Comparative Evaluation of Top-Down GOSAT XCO2 vs. Bottom-Up National Reports in the European Countries. Sustainability 2021, 13, 6700. [Google Scholar] [CrossRef]
- Matloob, A.; Sarif, M.O.; Um, J.-S. Exploring correlation between OCO−2 XCO2 and DMSP/OLS nightlight imagery signature in four selected locations in India. Spat. Inf. Res. 2021, 29, 123–135. [Google Scholar] [CrossRef]
- Park, S.-I.; Hwang, Y.; Um, J.-S. Utilizing OCO−2 satellite transect in comparing XCO2 concentrations among administrative regions in Northeast Asia. Spat. Inf. Res. 2017, 25, 459–466. [Google Scholar] [CrossRef]
- Park, A.-R.; Joo, S.-M.; Hwang, Y.; Um, J.-S. Evaluating seasonal CH4 flow tracked by GOSAT in Northeast Asia. Spat. Inf. Res. 2018, 26, 295–304. [Google Scholar] [CrossRef]
- Hwang, Y.; Roh, J.W.; Suh, D.; Otto, M.-O.; Schlueter, S.; Choudhury, T.; Huh, J.-S.; Um, J.-S. No evidence for global decrease in CO2 concentration during the first wave of COVID-19 pandemic. Environ. Monit. Assess. 2021, 193, 751. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Peñuelas, J.; Zhang, G.; et al. Asymmetric effects of daytime and nighttime warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Ju, W.; Porcar-Castell, A.; Ye, S.; Zhang, Z.; Brümmer, C.; Urbaniak, M.; Mammarella, I.; Juszczak, R.; et al. Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agric. For. Meteorol. 2020, 295, 108195. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Latham, J. Interspecific interactions of ungulates in European forests: An overview. For. Ecol. Manag. 1999, 120, 13–21. [Google Scholar] [CrossRef]
- Teskey, R.; Wertin, T.; Bauweraerts, I.; Ameye, M.; Mcguire, M.A.; Steppe, K. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015, 38, 1699–1712. [Google Scholar] [CrossRef]
- GOSAT Project Office. GOSAT/IBUKI Data Users Handbook; NIES GOSAT Project: Tsukuba, Japan, 2011. [Google Scholar]
- Cao, L.; Zhang, C.; Kurban, A.; Yuan, X.; Pan, T.; De Maeyer, P. The Temporal and Spatial Distributions of the Near-Surface CO2 Concentrations in Central Asia and Analysis of Their Controlling Factors. Atmosphere 2017, 8, 85. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Wang, X.; Yao, Y.; Zhao, S.; Jia, K.; Zhang, X.; Zhang, Y.; Zhang, L.; Xu, J.; Chen, X. MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine Learning Algorithms. Remote Sens. 2017, 9, 1326. [Google Scholar] [CrossRef] [Green Version]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Matloob, A.; Sarif, M.O.; Um, J.-S. Evaluating the inter-relationship between OCO−2 XCO2 and MODIS-LST in an Industrial Belt located at Western Bengaluru City of India. Spat. Inf. Res. 2021, 29, 257–265. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Quantitative Geography: Perspectives on Spatial Data Analysis; Sage: New York, NY, USA, 2000. [Google Scholar]
- Lin, C.-H.; Wen, T.-H. Using Geographically Weighted Regression (GWR) to Explore Spatial Varying Relationships of Immature Mosquitoes and Human Densities with the Incidence of Dengue. Int. J. Environ. Res. Public Health 2011, 8, 2798–2815. [Google Scholar] [CrossRef] [PubMed]
- Astuti, H.N.; Saputro, D.R.S.; Susanti, Y. Mixed geographically weighted regression (MGWR) model with weighted adaptive bi-square for case of dengue hemorrhagic fever (DHF) in Surakarta. J. Phys. Conf. Ser. 2017, 855, 012007. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, J.-S.; Hwang, J.; Schlüter, S. Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO2 Flux. Energies 2020, 13, 6009. [Google Scholar] [CrossRef]
- Baron, R.; Kenny, D. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.H. Estimating forest growth and efficiency in relation to canopy leaf area. In Advances in Ecological Research; MacFadyen, A., Ford, E.D., Eds.; Academic Press: Cambridge, MA, USA, 1983; Volume 13, pp. 327–354. [Google Scholar]
- Hwang, Y.; Um, J.-S. Comparative evaluation of OCO-2 XCO2 signature between REDD+ project area and nearby leakage belt. Spat. Inf. Res. 2017, 25, 693–700. [Google Scholar] [CrossRef]
- Hwang, Y.; Um, J.-S. Monitoring the Desiccation of Inland Wetland by Combining MNDWI and NDVI: A Case Study of Upo Wetland in South Korea. Spat. Inf. Res. 2015, 23, 31–41. [Google Scholar] [CrossRef]
- Herring, S.C.; Hoell, A.; Hoerling, M.P.; Kossin, J.P.; Schreck III, C.J.; Stott, P.A. Explaining extreme events of 2015 from a climate perspective. Bull. Am. Meteorol. Soc. 2016, 97, S1–S145. [Google Scholar] [CrossRef]
- Keenan, T.; Sabate, S.; Gracia, C. The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. Glob. Chang. Biol. 2010, 16, 1019–1034. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Bronge, L.B. Satellite Remote Sensing for Estimating Leaf Area Index, FPAR and Primary Production: A Literature Review; SKB Rapport R-04-24; Swedish Nuclear Fuel; Waste Management Co.: Stockholm, Sweden, 2004. [Google Scholar]
- Shekhar, A.; Chen, J.; Bhattacharjee, S.; Buras, A.; Castro, A.O.; Zang, C.S.; Rammig, A. Capturing the Impact of the 2018 European Drought and Heat across Different Vegetation Types Using OCO−2 Solar-Induced Fluorescence. Remote Sens. 2020, 12, 3249. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M. Changes in the Compound Drought and Extreme Heat Occurrence in the 1961–2018 Period at the European Scale. Water 2020, 12, 3543. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8, 421–426. [Google Scholar] [CrossRef]
- Niemeyer, S.; de Jager, A.; Kurnik, B.; Laguardia, G.; Magni, D.; Nitcheva, O.; Rossi, S.; Weissteiner, C. Current state of development of the European drought observatory. In EGU General Assembly Conference Abstracts; EGU General Assembly: Vienna, Austria, 2009; p. 12802. [Google Scholar]
- Forest Europe. State of Europe’s Forests 2020; Forest Europe: Zvolen, Slovak Republic, 2020. [Google Scholar]
- Schädel, C.; Bader, M.K.F.; Schuur, E.A.G.; Biasi, C.; Bracho, R.; Čapek, P.; De Baets, S.; Diáková, K.; Ernakovich, J.; Estop-Aragones, C.; et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 2016, 6, 950–953. [Google Scholar] [CrossRef]
- Natali, S.M.; Watts, J.D.; Rogers, B.M.; Potter, S.; Ludwig, S.M.; Selbmann, A.-K.; Sullivan, P.F.; Abbott, B.W.; Arndt, K.A.; Birch, L.; et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 2019, 9, 852–857. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Betts, R.A.; Jones, C.D.; Knight, J.R.; Keeling, R.F.; Kennedy, J.J. El Niño and a record CO2 rise. Nat. Clim. Chang. 2016, 6, 806–810. [Google Scholar] [CrossRef]
- Sippel, S.; Reichstein, M.; Ma, X.; Mahecha, M.D.; Lange, H.; Flach, M.; Frank, D. Drought, Heat, and the Carbon Cycle: A Review. Curr. Clim. Chang. Rep. 2018, 4, 266–286. [Google Scholar] [CrossRef] [Green Version]
- Siabi, Z.; Falahatkar, S.; Alavi, S.J. Spatial distribution of XCO2 using OCO−2 data in growing seasons. J. Environ. Manag. 2019, 244, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Xu, J.; Wang, X.; He, H.; Li, J.; Wu, L. Estimating CO2 concentration during the growing season from MODIS and GOSAT in East Asia. Int. J. Remote Sens. 2015, 36, 4363–4383. [Google Scholar] [CrossRef]
- Maksyutov, S.; Oda, T.; Saito, M.; Janardanan, R.; Belikov, D.; Kaiser, J.W.; Zhuravlev, R.; Ganshin, A.; Valsala, V.K.; Andrews, A.; et al. Technical note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM–FLEXPART coupled transport model and its adjoint. Atmos. Chem. Phys. 2021, 21, 1245–1266. [Google Scholar] [CrossRef]
Category | Resolution | Min | Max | Mean | STDEV | |
---|---|---|---|---|---|---|
GOSAT level 4 XCO2 | 2.5° | Month | −26.2 | 16.69 | 0.23 | 4.71 |
ODIAC (tonnes C/km2) | 1 km | Month | −0.385 | 0.747 | 0.009 | 0.201 |
MOD17a2 PSNnet (tonnes C/km2) | 0.5 km | 8 days | −508.01 | 649.23 | −3.98 | 148.32 |
MOD11A2 LST (°C) | 1 km | 8 days | −53.78 | 45.28 | −0.11 | 6.85 |
MOD13A2 NDVI | 1 km | 16 days | −0.55 | 0.44 | −0.001 | 0.11 |
MOD15A2 FPAR (%) | 0.5 km | 8 days | −0.51 | 0.45 | 0.001 | 0.11 |
MOD15A2 LAI (m2/m2) | 0.5 km | 8 days | −3.44 | 4.24 | −0.01 | 0.59 |
MOD16A2 Average Latent Heat Flux (J/m2/day) | 0.5 km | 8 days | −0.0002 | 0.0002 | 0.00 | 0.00004 |
Category | Max | Min | Mean | Standard Deviation |
---|---|---|---|---|
LST | 0.98 | 0.35 | 0.75 | 0.14 |
NDVI | 0.93 | 0.34 | 0.7 | 0.13 |
FPAR | 0.93 | 0.29 | 0.69 | 0.13 |
LAI | 0.99 | 0.31 | 0.7 | 0.14 |
Average latent heat flux | 0.96 | 0.34 | 0.61 | 0.12 |
CO2 (GOSAT level 4) | 0.99 | 0.61 | 0.86 | 0.09 |
Emission (ODIAC-PSNnet) | 0.97 | 0.37 | 0.72 | 0.11 |
Paths | X→Y | X→M | M→Y | ||||
---|---|---|---|---|---|---|---|
Category | NDVI→GOSAT XCO2 | FPAR→GOSAT XCO2 | LAI→GOSAT XCO2 | NDVI→LST | FPAR→LST | LAI→LST | LST→GOSAT XCO2 |
Pearson’s r | −0.40 ** | −0.47 ** | −0.40 ** | 0.32 ** | 0.64 ** | 0.373 ** | −0.45 ** |
Category | LST | NDVI | FPAR | LAI | ALHF | Emi. | |
---|---|---|---|---|---|---|---|
Standardized local coefficient | Min | 0.04 | −0.58 | −0.61 | −0.62 | −0.34 | −0.32 |
Max | 0.77 | 0.09 | 0.21 | 0.46 | 0.45 | 0.64 | |
Mean | 0.35 | −0.22 | −0.24 | −0.16 | 0.03 | 0.14 | |
Standard deviation | 0.17 | 0.14 | 0.20 | 0.26 | 0.25 | 0.23 | |
t-statistics | Min | 0.20 | −3.41 | −4.28 | −2.69 | −1.15 | −1.61 |
Max | 4.56 | 0.28 | 1.05 | 0.89 | 2.46 | 2.93 | |
Mean | 1.99 | −1.44 | −1.63 | −0.84 | 0.18 | 0.53 | |
Standard deviation | 1.20 | 0.70 | 1.45 | 0.92 | 1.08 | 1.08 | |
Local p-value | Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Max | 0.11 | 0.22 | 0.18 | 0.17 | 0.21 | 0.16 | |
Mean | 0.01 | 0.03 | 0.03 | 0.02 | 0.03 | 0.01 | |
Standard deviation | 0.05 | 0.08 | 0.09 | 0.08 | 0.09 | 0.09 |
Category | LST | NDVI | FPAR | LAI | GOSAT XCO2 | ODIAC |
---|---|---|---|---|---|---|
Slope Estimate | 0.2826 | 0.0073 | −0.0001 | 0.1078 | 2.3749 | −0.26 |
Confidence Band | 0.2129 | 0.0069 | 0.0028 | 0.0429 | 0.1451 | 0.1152 |
Category | Mediator | R | R2 (p-Value) | Standardized Coefficient | Total Effect (p-Value) | Direct Effect (p-Value) | Indirect Effect | ||
---|---|---|---|---|---|---|---|---|---|
Indirect (%) | LLCI | ULCI | |||||||
NDVI | LST | 0.53 | 0.28 (0.00) | −0.40 | −16.96 (0.00) | −12.15 (0.00) | −28.4 | −5.17 | −4.45 |
FPAR | LST | 0.47 | 0.22 (0.00) | −0.47 | −19.47 (0.00) | −12.82 (0.00) | −34.1 | −7.25 | −6.05 |
LAI | LST | 0.40 | 0.16 (0.00) | −0.40 | −3.22 (0.00) | −2.19 (0.00) | −32.1 | −1.12 | −0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.-S.; Schlüter, S.; Um, J.-S. Spatial Cross-Correlation of GOSAT CO2 Concentration with Repeated Heat Wave-Induced Photosynthetic Inhibition in Europe from 2009 to 2017. Remote Sens. 2022, 14, 4536. https://doi.org/10.3390/rs14184536
Hwang Y-S, Schlüter S, Um J-S. Spatial Cross-Correlation of GOSAT CO2 Concentration with Repeated Heat Wave-Induced Photosynthetic Inhibition in Europe from 2009 to 2017. Remote Sensing. 2022; 14(18):4536. https://doi.org/10.3390/rs14184536
Chicago/Turabian StyleHwang, Young-Seok, Stephan Schlüter, and Jung-Sup Um. 2022. "Spatial Cross-Correlation of GOSAT CO2 Concentration with Repeated Heat Wave-Induced Photosynthetic Inhibition in Europe from 2009 to 2017" Remote Sensing 14, no. 18: 4536. https://doi.org/10.3390/rs14184536
APA StyleHwang, Y. -S., Schlüter, S., & Um, J. -S. (2022). Spatial Cross-Correlation of GOSAT CO2 Concentration with Repeated Heat Wave-Induced Photosynthetic Inhibition in Europe from 2009 to 2017. Remote Sensing, 14(18), 4536. https://doi.org/10.3390/rs14184536