Artificial Reef Detection Method for Multibeam Sonar Imagery Based on Convolutional Neural Networks
Abstract
:1. Introduction
2. Related Work
- A large-scale multibeam sonar image artificial reef detection dataset, FIO-AR, is established and published for the first time to facilitate the development of multibeam sonar image artificial reef detection.
- A semantic segmentation framework based on a CNN, the AR-Net, is designed for artificial reef detection in multibeam sonar images.
- Various artificial reefs at different water depths can be accurately detected using the proposed method.
3. Materials and Methods
3.1. Artificial Reef Detection Dataset for the Multibeam Sonar Images
3.2. The AR-Net Framework Design
4. Results
4.1. The Evaluation Criteria
4.2. Quantitative Evaluation for FIO-AR Dataset
4.3. The Time Consumptions
4.4. The Model Parameter Evaluation
4.5. Quantitative Evaluation for Artificial Reef Detection Results of Large-Scale Multibeam Sonar Image
5. Discussion
5.1. Visual Evaluation for the FIO-AR Dataset
5.2. Visual Evaluation for the Large-Scale Multibeam Sonar Image
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Networks |
SSD | Single Shot Multibox Detector |
YOLO | You Only Look Once |
FCN | Fully Convolutional Networks |
HSRIs | High Spatial Resolution Remote Sensing Images |
R-CNN | Regional Convolutional Neural Networks |
GAN | Generative Adversarial Network |
AR-Net | Artificial Reefs Detection Framework based on Convolutional Neural Networks |
MBES | Multibeam Echosounding |
SGD | Stochastic Gradient Descent |
IOU | Intersection-Over-Union |
TP | True Positive |
FP | False Positive |
FN | False Negative |
References
- Yang, H. Construction of marine ranching in China: Reviews and prospects. J. Fish. China 2016, 40, 1133–1140. [Google Scholar]
- Yang, H.; Zhang, S.; Zhang, X.; Chen, P.; Tian, T.; Zhang, T. Strategic thinking on the construction of modern marine ranching in China. J. Fish. China 2019, 43, 1255–1262. [Google Scholar]
- Zhou, X.; Zhao, X.; Zhang, S.; Lin, J. Marine ranching construction and management in east china sea: Programs for sustainable fishery and aquaculture. Water 2019, 11, 1237. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, L. Evolution of marine ranching policies in China: Review, performance and prospects. Sci. Total Environ. 2020, 737, 139782. [Google Scholar] [CrossRef]
- Qin, M.; Wang, X.; Du, Y.; Wan, X. Influencing factors of spatial variation of national marine ranching in China. Ocean Coast. Manag. 2021, 199, 105407. [Google Scholar] [CrossRef]
- Kang, M.; Nakamura, T.; Hamano, A. A methodology for acoustic and geospatial analysis of diverse artificial-reef datasets. ICES J. Mar. Sci. 2011, 68, 2210–2221. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, Y.; Zhou, H.; Jin, C.; Zhang, C. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci. Total Environ. 2020, 703, 134768. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y. Exploring the goals and objectives of policies for marine ranching management: Performance and prospects for China. Mar. Pol. 2020, 122, 104255. [Google Scholar] [CrossRef]
- Castro, K.L.; Battini, N.; Giachetti, C.B.; Trovant, B.; Abelando, M.; Basso, N.G.; Schwindt, E. Early detection of marine invasive species following the deployment of an artificial reef: Integrating tools to assist the decision-making process. J. Environ. Manag. 2021, 297, 113333. [Google Scholar] [CrossRef]
- Whitmarsh, S.K.; Barbara, G.M.; Brook, J.; Colella, D.; Fairweather, P.G.; Kildea, T.; Huveneers, C. No detrimental effects of desalination waste on temperate fish assemblages. ICES J. Mar. Sci. 2021, 78, 45–54. [Google Scholar] [CrossRef]
- Becker, A.; Taylor, M.D.; Lowry, M.B. Monitoring of reef associated and pelagic fish communities on Australia’s first purpose built offshore artificial reef. ICES J. Mar. Sci. 2016, 74, 277–285. [Google Scholar] [CrossRef]
- Lowry, M.; Folpp, H.; Gregson, M.; Suthers, I. Comparison of baited remote underwater video (BRUV) and underwater visual census (UVC) for assessment of artificial reefs in estuaries. J. Exp. Mar. Biol. Ecol. 2012, 416, 243–253. [Google Scholar] [CrossRef]
- Becker, A.; Taylor, M.D.; Mcleod, J.; Lowry, M.B. Application of a long-range camera to monitor fishing effort on an offshore artificial reef. Fish. Res. 2020, 228, 105589. [Google Scholar] [CrossRef]
- Trzcinska, K.; Tegowski, J.; Pocwiardowski, P.; Janowski, L.; Zdroik, J.; Kruss, A.; Rucinska, M.; Lubniewski, Z.; Schneider von Deimling, J. Measurement of seafloor acoustic backscatter angular dependence at 150 kHz using a multibeam echosounder. Remote Sens. 2021, 13, 4771. [Google Scholar] [CrossRef]
- Tassetti, A.N.; Malaspina, S.; Fabi, G. Using a multibeam echosounder to monitor an artificial reef. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Piano di Sorrento, Italy, 16–17 April 2015. [Google Scholar]
- Wan, J.; Qin, Z.; Cui, X.; Yang, F.; Yasir, M.; Ma, B.; Liu, X. MBES seabed sediment classification based on a decision fusion method using deep learning model. Remote Sens. 2022, 14, 3708. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (CVPR), Boston, MA, USA, 8–12 June 2015; pp. 1440–1448. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 21–37. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region based fully convolutional networks. In Proceedings of the Neural Information Processing Systems (NIPS), Barcelona, Spain, 4–9 December 2016; pp. 379–387. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Dong, Z.; Wang, M.; Wang, Y.; Liu, Y.; Feng, Y.; Xu, W. Multi-oriented object detection in high-resolution remote sensing imagery based on convolutional neural networks with adaptive object orientation features. Remote Sens. 2022, 14, 950. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, M.; Wang, Y.; Zhu, Y.; Zhang, Z. Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2104–2114. [Google Scholar] [CrossRef]
- Xiong, H.; Liu, L.; Lu, Y. Artificial reef detection and recognition based on Faster-RCNN. In Proceedings of the IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 17–19 December 2021; Volume 2, pp. 1181–1184. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Feldens, P.; Westfeld, P.; Valerius, J.; Feldens, A.; Papenmeier, S. Automatic detection of boulders by neural networks. In Hydrographische Nachrichten 119; Deutsche Hydrographische Gesellschaft E.V.: Rostock, Germany, 2021; pp. 6–17. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Comput. Sci. 2014, 357–361. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Han, L.; Li, X.; Dong, Y. Convolutional edge constraint-based U-Net for salient object detection. IEEE Access 2019, 7, 48890–48900. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Medical image recognition and segmentation of pathological slices of gastric cancer based on Deeplab v3+ neural network. Comput. Met. Prog. Biomed. 2021, 207, 106210. [Google Scholar] [CrossRef]
- Bi, L.; Feng, D.; Kim, J. Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis. Comput. 2018, 34, 1043–1052. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A nested U-Net architecture for medical image segmentation. In Proceedings of the 4th Deep Learning in Medical Image Analysis (DLMIA) Workshop, Granada, Spain, 20 September 2018. [Google Scholar]
- Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building extraction based on U-Net with an attention block and multiple losses. Remote Sens. 2020, 12, 1400. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, D.; Wang, N.; Shi, Z.; Chen, Q. Road extraction from very-high-resolution remote sensing images via a nested SE-Deeplab model. Remote Sens. 2020, 12, 2985. [Google Scholar] [CrossRef]
- Jiao, L.; Huo, L.; Hu, C.; Tang, P. Refined unet: Unet-based refinement network for cloud and shadow precise segmentation. Remote Sens. 2020, 12, 2001. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Backpropagation applied to kandwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Xu, W.; Feng, Y.; Chen, Y.; Tang, Q. A cloud detection method for GaoFen-6 wide field of view imagery based on the spectrum and variance of superpixels. Int. J. Remote Sens. 2021, 42, 6315–6332. [Google Scholar] [CrossRef]
- He, S.; Jiang, W. Boundary-assisted learning for building extraction from optical remote sensing imagery. Remote Sens. 2021, 13, 760. [Google Scholar] [CrossRef]
NORBIT-iWBMS | Teledyne Reson SeaBat T50P | |
---|---|---|
Sounding range | 0.2~200 m | 0.5~575 m |
Beam resolution | 0.9° × 1.9° | 0.5° × 1.0° |
Beam coverage | 150° | 165° |
Depth resolution | <10 mm | 6 mm |
Number of beams | 512 | 1024 |
Emission frequency | 360~440 kHz | 200 kHz and 400 kHz |
Precision | Recall | F1-Score | IOU | OA | |
---|---|---|---|---|---|
Deeplab [34] | 0.8296 | 0.5312 | 0.6477 | 0.4789 | 0.9046 |
FCN [31] | 0.8279 | 0.7425 | 0.7829 | 0.6432 | 0.932 |
U-Net [32] | 0.8722 | 0.8559 | 0.864 | 0.7605 | 0.9555 |
SegNet [33] | 0.8956 | 0.8191 | 0.8557 | 0.7477 | 0.9544 |
ResUNet-a [44] | 0.8744 | 0.8184 | 0.8455 | 0.7324 | 0.9506 |
AR-Net | 0.8731 | 0.8638 | 0.8684 | 0.7674 | 0.9568 |
Time/Per Image (s) | |
---|---|
Deeplab [34] | 0.08 |
FCN [31] | 0.1 |
U-Net [32] | 0.16 |
SegNet [33] | 0.12 |
ResUNet-a [44] | 0.12 |
AR-Net | 0.08 |
Model Size (MB) | FLOPS | |
---|---|---|
Deeplab [34] | 78.2 | 48.081 B |
FCN [31] | 704 | 47.365 B |
U-Net [32] | 131 | 114.89 B |
SegNet [33] | 124 | 79.735 B |
ResUNet-a [44] | 84.3 | 52.676 B |
AR-Net | 23.2 | 23.466 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Liu, Y.; Yang, L.; Feng, Y.; Ding, J.; Jiang, F. Artificial Reef Detection Method for Multibeam Sonar Imagery Based on Convolutional Neural Networks. Remote Sens. 2022, 14, 4610. https://doi.org/10.3390/rs14184610
Dong Z, Liu Y, Yang L, Feng Y, Ding J, Jiang F. Artificial Reef Detection Method for Multibeam Sonar Imagery Based on Convolutional Neural Networks. Remote Sensing. 2022; 14(18):4610. https://doi.org/10.3390/rs14184610
Chicago/Turabian StyleDong, Zhipeng, Yanxiong Liu, Long Yang, Yikai Feng, Jisheng Ding, and Fengbiao Jiang. 2022. "Artificial Reef Detection Method for Multibeam Sonar Imagery Based on Convolutional Neural Networks" Remote Sensing 14, no. 18: 4610. https://doi.org/10.3390/rs14184610
APA StyleDong, Z., Liu, Y., Yang, L., Feng, Y., Ding, J., & Jiang, F. (2022). Artificial Reef Detection Method for Multibeam Sonar Imagery Based on Convolutional Neural Networks. Remote Sensing, 14(18), 4610. https://doi.org/10.3390/rs14184610