Elevation Change of CookE2 Subglacial Lake in East Antarctica Observed by DInSAR and Time-Segmented PSInSAR
Abstract
:1. Introduction
2. Materials
2.1. Study Area and Satellite Altimeter Data
2.2. Synthetic Aperture Radar (SAR) Data
3. Methods
3.1. Differential Interferometric SAR (DInSAR)
3.2. Time-Segmented Persistent Scatterer InSAR (TS-PSInSAR)
4. Results
4.1. Surface Morphology of CookE2 during Discharge and Recharge Observed by DInSAR
4.2. Time-Series Analysis Using Time Segmented PSInSAR (TS-PSInSAR)
4.3. Recent Elevation Change by TS-PSInSAR
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Livingstone, S.J.; Li, Y.; Rutishauser, A.; Sanderson, R.J.; Winter, K.; Mikucki, J.A.; Bjornsson, H.; Bowling, J.S.; Chu, W.N.; Dow, C.F.; et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 2022, 3, 106–124. [Google Scholar] [CrossRef]
- Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett. 2010, 295, 451–461. [Google Scholar] [CrossRef]
- Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 2002, 297, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Macgregor, K.R.; Riihimaki, C.A.; Anderson, R.S. Spatial and temporal evolution of rapid basal sliding on Bench Glacier, Alaska, USA. J. Glaciol. 2005, 51, 49–63. [Google Scholar] [CrossRef]
- Bell, R.E.; Studinger, M.; Shuman, C.A.; Fahnestock, M.A.; Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 2007, 445, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Robin, Q.; Swithinbank, M.; Smith, B.M.E. Radio echo exploration of the Antarctic ice sheet. Int. Assoc. Sci. Hydrol. Publ. 1970, 86, 97–115. [Google Scholar]
- Siegert, M.J.; Dowdeswell, J.A.; Gorman, M.R.; McIntyre, N.F. An inventory of Antarctic sub-glacial lakes. Antarct. Sci. 1996, 8, 281–286. [Google Scholar] [CrossRef]
- Siegert, M.J. Antarctic subglacial lakes. Earth-Sci. Rev. 2000, 50, 29–50. [Google Scholar] [CrossRef]
- McMillan, M.; Corr, H.; Shepherd, A.; Ridout, A.; Laxon, S.; Cullen, R. Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes. Geophys. Res. Lett. 2013, 40, 4321–4327. [Google Scholar] [CrossRef]
- Fricker, H.A.; Siegfried, M.R.; Carter, S.P.; Scambos, T.A. A decade of progress in observing and modelling Antarctic subglacial water systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20140294. [Google Scholar] [CrossRef]
- Siegfried, M.R.; Fricker, H.A. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. 2018, 59, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.E.; Fricker, H.A.; Joughin, I.R.; Tulaczyk, S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol. 2009, 55, 573–595. [Google Scholar] [CrossRef]
- Fricker, H.A.; Scambos, T.; Bindschadler, R.; Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 2007, 315, 1544–1548. [Google Scholar] [CrossRef]
- MacKie, E.J.; Schroeder, D.M.; Caers, J.; Siegfried, M.R.; Scheidt, C. Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005420. [Google Scholar] [CrossRef]
- Siegert, M.J.; Ridley, J.K. An analysis of the ice-sheet surface and subsurface topography above the Vostok Station subglacial lake, central East Antarctica. J. Geophys. Res. 1998, 103, 10195–10207. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Wang, F.; Bamber, J.L.; Cheng, X. Accuracy and performance of CryoSat-2 SARIn mode data over Antarctica. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1516–1520. [Google Scholar] [CrossRef]
- Magruder, L.; Neuenschwander, A.; Klotz, B. Digital terrain model elevation corrections using space-based imagery and ICESat-2 laser altimetry. Remote Sens. Environ. 2021, 264, 112621. [Google Scholar] [CrossRef]
- Han, H.; Lee, H. Surface strain rates and crevassing of Campbell Glacier Tongue in East Antarctica analysed by tide-corrected DInSAR. Remote Sens. Lett. 2017, 8, 330–339. [Google Scholar] [CrossRef]
- Gray, L.; Joughin, I.; Tulaczyk, S.; Spikes, V.B.; Bindschadler, R.; Jezek, K. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Capps, D.M.; Rabus, B.; Clague, J.J.; Shugar, D.H. Identification and characterization of alpine subglacial lakes using interferometric synthetic aperture radar (InSAR): Brady Glacier, Alaska, USA. J. Glaciol. 2010, 56, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.; McMillan, M.; Morlighem, M. Subglacial lake drainage detected beneath the Greenland ice sheet. Nat. Commun. 2015, 6, 8408. [Google Scholar] [CrossRef]
- Neckel, N.; Franke, S.; Helm, V.; Drews, R.; Jansen, D. Evidence of Cascading Subglacial Water Flow at Jutulstraumen Glacier (Antarctica) Derived From Sentinel-1 and ICESat-2 Measurements. Geophys. Res. Lett. 2021, 48, e2021GL094472. [Google Scholar] [CrossRef]
- Lee, H.; Seo, H.; Han, H.; Ju, H.; Lee, J. Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar. Remote Sens. 2021, 13, 2691. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR interferometry. IEEE Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Pandit, P.H.; Jawak, S.D.; Luis, A.J. Estimation of Velocity of the Polar Record Glacier, Antarctica Using Synthetic Aperture Radar (SAR). Proceedings 2018, 2, 332. [Google Scholar] [CrossRef]
- Flament, T.; Berthier, E.; Rémy, F. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models. Cryosphere 2014, 8, 673–687. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Siegert, M.J. Radar sounding confirms a hydrologically active deep-water subglacial lake in east Antarctica. Front. Earth Sci. 2020, 8, 294. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B. MEaSUREs Phase-Based Antarctica Ice Velocity Map; Version 1 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B. Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys. Res. Lett. 2019, 46, 9710–9718. [Google Scholar] [CrossRef]
- Copernicus Space Component Data Access. Available online: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198 (accessed on 4 August 2022).
- Wright, A.; Siegert, M. A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 2012, 24, 659–664. [Google Scholar] [CrossRef]
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Suzuki, S.; Ohgushi, F.; Tadono, T.; Watanabe, M.; Tsuzuku, K.; Watanabe, T.; Kamijo, S.; Aoki, E. Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2. Remote Sens. Environ. 2014, 155, 3–12. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Watanabe, M. ALOS PALSAR: Technical outline and mission concepts. In Proceedings of the 4th International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications, Innsbruck, Austria, 16–19 November 2004. [Google Scholar]
- Potin, P.; Rosich, B.; Miranda, N.; Grimont, P.; Bargellini, P.; Monjoux, E.; Martin, J.; Desnos, Y.-L.; Roeder, J.; Shurmer, I. Sentinel-1 mission status. In Proceedings of the IEEE IGARSS, Milan, Italy, 26–31 July 2015; pp. 2820–2823. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/-/copernicus-sentinel-1b-anomaly-6th-update (accessed on 4 August 2022).
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Radio Sci. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Lee, H.; Seo, H. DInSAR signal of a subglacial lake in Wilkes Land, East Antarctica. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- Seo, H.; Han, H.; Lee, H. Velocity Anomaly of David Glacier, East Antarctica, Observed by Double-Differential INSAR. In Proceedings of the IEEE IGARSS, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Kim, H.; Han, H.; Lee, H. Uncharted Subglacial Lakes of David Glacier in East Antarctica Identified from Sentinel-1 DDInSAR and ICESat-2/CryoSat-2 Altimetry. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA & Online, 13–17 December 2021. [Google Scholar]
- Hooper, A.J.; Bekaert, D.; Hussain, E.; Spaans, K. StaMPS/MTI Manual; School of Earth and Environment: Leeds, UK, 2018. [Google Scholar]
- GIS-Blog. Available online: https://gitlab.com/Rexthor/gis-blog/-/blob/master/StaMPS/2-4_StaMPS-steps.md (accessed on 1 September 2022).
- Ice Bridge. Available online: https://www.nasa.gov/mission_pages/icebridge/instruments/mcords.html (accessed on 4 August 2022).
- Paden, J.; Li, J.; Leuschen, C.; Rodriguez-Morales, F.; Hale, R. IceBridge MCoRDS L3 Gridded Ice Thickness, Surface, and Bottom; Version 2 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2013. [Google Scholar] [CrossRef]
- Paden, J.; Li, J.; Leuschen, C.; Rodriguez-Morales, F.; Hale, R. IceBridge MCoRDS L1B Geolocated Radar Echo Strength Profiles; Version 2 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2014. [Google Scholar] [CrossRef]
Study | Lake State | Period (yyyy/mm) | dH (m) | dH/dt (m/Year) | dV (km3) | Area (km2) |
---|---|---|---|---|---|---|
Smith et al. [9] | Discharge | 2006/11~2008/03 | 44~48 | 33.5~36.5 * | 2.7 | 146 |
McMillan et al. [12] | Discharge | 2006/10~2008/10 | 70 | 35 ± 14 | 6.36 | 260 |
Recharge | 2008/10~2011/10 | 17.2 ± 8.6 * | 5.6 ± 2.8 | - | ||
Flament et al. [28] | Discharge | 2006/11~2008/10 | 70 | 36.0 * | 5.16 ± 1.52 | 192~267 |
Recharge | 2008/10~2012/02 | 13 | 3.9 * | 0.64 ± 0.32 | ||
Li et al. [29] | Discharge | 2006/02~2008/10 | 59.6 | 22.8 * | 2.73 | 46 |
Recharge | 2011/01~2016/11 | 6.4 * | 1.1 | 0.42 |
Satellite | Path | Frame | Acquisition Date (yyyy/mm/dd) | Acquisition Mode | Number of Scenes | Perpendicular Baseline (m) | Temporal Baseline (Days) |
---|---|---|---|---|---|---|---|
ALOS | 435 | 5630 | 2007/11/15, 2007/12/31 | FBS | 2 | 880.21 | 46 |
2010/10/20, 2010/12/05 | FBS | 2 | 1030.33 | 46 | |||
Sentinel-1 | 54 | 926 | 2018/09/12~2020/12/30 | IW | 112 | −148.89~108.61 | 6 or 12 |
Parameter | Description | Default | Changed |
---|---|---|---|
scla_deramp | This parameter determines whether to estimate the phase ramp in each interferogram. If the phase ramp is estimated. It is subtracted before unwrapping. | ‘n’ | ‘y’ |
unwrap_gold_n_win | This parameter determines the window size of Goldstein filtering performed before unwrapping [42]. | 32 | 8 |
unwrap_grid_size | After prefiltering before unwrapping, the grid spacing must be resampled. This parameter determines the grid spacing. Higher values reduce noise, but may cause undersampling. | 200 | 10 |
unwrap_time_win | This parameter determines the smoothing window (in days) for smoothing the phase noise in time. | 730 | 24 |
scn_time_win | This parameter determines temporal filtering (low-pass filtering) time window size for estimating the error. | 365 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, J.; Lee, H.; Lee, H. Elevation Change of CookE2 Subglacial Lake in East Antarctica Observed by DInSAR and Time-Segmented PSInSAR. Remote Sens. 2022, 14, 4616. https://doi.org/10.3390/rs14184616
Moon J, Lee H, Lee H. Elevation Change of CookE2 Subglacial Lake in East Antarctica Observed by DInSAR and Time-Segmented PSInSAR. Remote Sensing. 2022; 14(18):4616. https://doi.org/10.3390/rs14184616
Chicago/Turabian StyleMoon, Jihyun, Hoseung Lee, and Hoonyol Lee. 2022. "Elevation Change of CookE2 Subglacial Lake in East Antarctica Observed by DInSAR and Time-Segmented PSInSAR" Remote Sensing 14, no. 18: 4616. https://doi.org/10.3390/rs14184616
APA StyleMoon, J., Lee, H., & Lee, H. (2022). Elevation Change of CookE2 Subglacial Lake in East Antarctica Observed by DInSAR and Time-Segmented PSInSAR. Remote Sensing, 14(18), 4616. https://doi.org/10.3390/rs14184616