Characterization of Long-Time Series Variation of Glacial Lakes in Southwestern Tibet: A Case Study in the Nyalam County
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source and Preprocessing
3. Methods
3.1. Glacial Lake Boundary Extraction
3.1.1. Unfrozen Frozen Lake Boundary Extraction
3.1.2. Single-Band Threshold Boundary Extraction
3.1.3. Precision Inspection
3.2. Response Analysis of Glacial Lake Changes to Climate Change
3.2.1. GeogDetector Model
3.2.2. Multivariate Linear Regression
3.2.3. Mann–Kendall Trend Test and Estimation of Sen’s Slopes
3.3. Risk Analysis of Glacial Lake Outburst
3.3.1. Water Flow Calculation
3.3.2. HEC-RAS V.5 Model
4. Results
4.1. Glacial Lake Extraction Results
4.1.1. General Distribution Characteristics of Glacial Lakes
- Number and area changes
- 2.
- Altitude analysis
4.1.2. Characteristics of Glacial Lake Changes in Different Periods
4.1.3. Precision Test Results
4.2. Analysis Results of Climate Response to Glacial Lake Changes
4.2.1. GeogDetector Model Analysis Results
4.2.2. Multivariate Linear Regression Analysis Results
4.2.3. Mann–Kendall Trend Test and Estimation of Sen’s Slopes Results
4.3. Simulation Results of a Glacial Lake Outburst Event
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.J.; Quincey, D.J. Estimating the volume of Alpine glacial lakes. Earth Surf. Dyn. 2015, 3, 559–575. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.; Bierkens, M.; Lutz, A.; Immerzeel, W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Van Beek, L.; Konz, M.; Shrestha, A.; Bierkens, M. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Chang. 2012, 110, 721–736. [Google Scholar] [CrossRef]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef]
- Zalazar, L.; Ferri, L.; Castro, M.; Gargantini, H.; Gimenez, M.; Pitte, P.; Ruiz, L.; Masiokas, M.; Costa, G.; Villalba, R. Spatial distribution and characteristics of Andean ice masses in Argentina: Results from the first National Glacier Inventory. J. Glaciol. 2020, 66, 938–949. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM). Front. Earth Sci. 2020, 7, 331. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef]
- Liu, C.; Shi, Y.; Wang, Z.; Xie, Z. Glacier resources and their distributive characteristics in China, a review on Chinese Glacier Inventory. J. Glaciol. Geocryol. 2000, 22, 106–112. [Google Scholar]
- Immerzeel, W.W.; Lutz, A.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.; Elmore, A. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Armstrong, R.; Williams, M.W. Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resour. Res. 2013, 49, 5117–5133. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
- Schwanghart, W.; Worni, R.; Huggel, C.; Stoffel, M.; Korup, O. Uncertainty in the Himalayan energy–water nexus: Estimating regional exposure to glacial lake outburst floods. Environ. Res. Lett. 2016, 11, 074005. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Tsutaki, S.; Fujita, K.; Nuimura, T.; Sakai, A.; Sugiyama, S.; Komori, J.; Tshering, P. Contrasting thinning patterns between lake-and land-terminating glaciers in the Bhutanese Himalaya. Cryosphere 2019, 13, 2733–2750. [Google Scholar] [CrossRef]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [PubMed]
- Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P.; Paul, F. Remote Sensing Based Assessment of Hazards from Glacier Lake Outbursts: A Case Study in the Swiss Alps; NRC Research Press: Ottawa, ON, Canada, 2002; p. 39. [Google Scholar] [CrossRef]
- Schubert, A.; Faes, A.; Kääb, A.; Meier, E. Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet-vs. correlation-based image matching. ISPRS J. Photogramm. Remote Sens. 2013, 82, 49–62. [Google Scholar] [CrossRef]
- Quincey, D.; Lucas, R.; Richardson, S.; Glasser, N.; Hambrey, M.; Reynolds, J. Optical remote sensing techniques in high-mountain environments: Application to glacial hazards. Prog. Phys. Geogr. 2005, 29, 475–505. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.; Baraër, M.; Caceres, E.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.; Liu, X. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Sakai, A.; Fujita, K. Formation conditions of supraglacial lakes on debris-covered glaciers in the Himalaya. J. Glaciol. 2010, 56, 177–181. [Google Scholar] [CrossRef]
- Sakai, A.; Nishimura, K.; Kadota, T.; Takeuchi, N. Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya. J. Glaciol. 2009, 55, 909–917. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Lippl, S.; Vijay, S.; Braun, M. Automatic delineation of debris-covered glaciers using InSAR coherence derived from X-, C-and L-band radar data: A case study of Yazgyl Glacier. J. Glaciol. 2018, 64, 811–821. [Google Scholar] [CrossRef]
- Du, P.; Bai, X.; Tan, K.; Xue, Z.; Samat, A.; Xia, J.; Li, E.; Su, H.; Liu, W. Advances of four machine learning methods for spatial data handling: A review. J. Geovisualization Spat. Anal. 2020, 4, 13. [Google Scholar] [CrossRef]
- Jing, L.J.; Lan, C.Z.; Cheng, S.P. The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quat. Int. 2014, 321, 78–87. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C.; Lala, J.M.; Byers, A.C.; Watson, C.S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 2016, 20, 3455–3475. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Narama, C.; Daiyrov, M.; Tadono, T.; Yamamoto, M.; Kääb, A.; Morita, R.; Ukita, J. Seasonal drainage of supraglacial lakes on debris-covered glaciers in the Tien Shan Mountains, Central Asia. Geomorphology 2017, 286, 133–142. [Google Scholar] [CrossRef]
- Hewitt, K. Glaciers of the Karakoram Himalaya: Glacial Environments, Processes, Hazards and Resources; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Anand, J.; Gosain, A.; Khosa, R.; Srinivasan, R. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. J. Hydrol. Reg. Stud. 2018, 16, 32–53. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Masood, M.; Yeh, P.-F.; Hanasaki, N.; Takeuchi, K. Model study of the impacts of future climate change on the hydrology of Ganges–Brahmaputra–Meghna basin. Hydrol. Earth Syst. Sci. 2015, 19, 747–770. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Westoby, M.J.; Glasser, N.F.; Brasington, J.; Hambrey, M.J.; Quincey, D.; Reynolds, J. Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci. Rev. 2014, 134, 137–159. [Google Scholar] [CrossRef]
- Bajracharya, B.; Shrestha, A.B.; Rajbhandari, L. Glacial lake outburst floods in the Sagarmatha region. Mt. Res. Dev. 2007, 27, 336–344. [Google Scholar] [CrossRef]
- Worni, R.; Stoffel, M.; Huggel, C.; Volz, C.; Casteller, A.; Luckman, B. Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina). J. Hydrol. 2012, 444, 134–145. [Google Scholar] [CrossRef]
- Wang, W.; Gao, Y.; Anacona, P.I.; Lei, Y.; Xiang, Y.; Zhang, G.; Li, S.; Lu, A. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas. Geomorphology 2018, 306, 292–305. [Google Scholar] [CrossRef]
- Petrakov, D.; Tutubalina, O.; Aleinikov, A.; Chernomorets, S.; Evans, S.; Kidyaeva, V.; Krylenko, I.; Norin, S.; Shakhmina, M.; Seynova, I. Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. Nat. Hazards 2012, 61, 1293–1316. [Google Scholar] [CrossRef]
- Liu, Z.; Su, Z. Reasources and distrubution of glaciers on the Tibetan Plateau. Resour. Sci. 2000, 22, 49–52. [Google Scholar] [CrossRef]
- Han, D.; Li, C. Based on Landsat8 OLI Remote Sensing Image Glacial Lake Boundary Classification and Stacking Extraction; Beijing Surveying and Mapping: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Carling, P.; Villanueva, I.; Herget, J.; Wright, N.; Borodavko, P.; Morvan, H. Unsteady 1D and 2D hydraulic models with ice dam break for Quaternary megaflood, Altai Mountains, southern Siberia. Glob. Planet. Chang. 2010, 70, 24–34. [Google Scholar] [CrossRef]
- Hazra, P.; Krishna, A.P. Assessment of Proglacial Lakes in Sikkim Himalaya, India for Glacial Lake Outburst Flood (GLOF) Risk Analysis using HEC-RAS and Geospatial Techniques. J. Geol. Soc. India 2022, 98, 344–352. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, D.; Liang, K.; Li, X.; Dong, G. Reduced runoff due to anthropogenic intervention in the Loess Plateau, China. Water 2016, 8, 458. [Google Scholar] [CrossRef]
- Jain, S.K.; Mir, R.A. Glacier and glacial lake classification for change detection studies using satellite data: A case study from Baspa basin, western Himalaya. Geocarto Int. 2019, 34, 391–414. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Liu, S. Glacial lake expansion in the Central Himalayas by Landsat images, 1990–2010. PLoS ONE 2013, 8, e83973. [Google Scholar] [CrossRef]
- Li, D.-S.; Cui, B.-L.; Wang, Y.; Xiao, B.; Jiang, B.-F. Glacier extent changes and possible causes in the Hala Lake Basin of Qinghai-Tibet Plateau. J. Mt. Sci. 2019, 16, 1571–1583. [Google Scholar] [CrossRef]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.-Y.; Zhang, X.; Liu, X.; Colella, M.; Chen, X. An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J. Hydrometeorol. 2008, 9, 301–326. [Google Scholar] [CrossRef]
- Wang, S.-J.; Zhang, T. Glacial lakes change and current status in the central Chinese Himalayas from 1990 to 2010. J. Appl. Remote Sens. 2013, 7, 073459. [Google Scholar] [CrossRef]
- Bazai, N.A.; Cui, P.; Carling, P.A.; Wang, H.; Hassan, J.; Liu, D.; Zhang, G.; Jin, W. Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram. Earth-Sci. Rev. 2021, 212, 103432. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, M.; Li, Z.; Li, H.; Wang, S.; Sun, M.; Zha, S. Glacier mass-balance and length variation observed in China during the periods 1959–2015 and 1930–2014. Quat. Int. 2017, 454, 68–84. [Google Scholar] [CrossRef]
- Jain, S.K.; Sinha, R.K.; Chaudhary, A.; Shukla, S. Expansion of a glacial lake, Tsho Chubda, Chamkhar Chu Basin, Hindukush Himalaya, Bhutan. Nat. Hazards 2015, 75, 1451–1464. [Google Scholar] [CrossRef]
- Yao, X.; Liu, S.; Sun, M.; Zhang, X. Study on the glacial lake outburst flood events in Tibet since the 20th century. Ziran Ziyuan Xuebao 2014, 29, 1377–1390. [Google Scholar] [CrossRef]
- Zhang, G.; Bolch, T.; Allen, S.; Linsbauer, A.; Chen, W.; Wang, W. Glacial lake evolution and glacier–lake interactions in the Poiqu River basin, central Himalaya, 1964–2017. J. Glaciol. 2019, 65, 347–365. [Google Scholar] [CrossRef]
- Nepal, S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro-Environ. Res. 2016, 10, 76–89. [Google Scholar] [CrossRef]
- Qian, H.; Xiao’ai, D.; Shiqi, C. Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China. J. Arid. Land 2020, 12, 865–886. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, K.; Wang, B.; Sheng, Y.; Bird, B.W.; Zhang, G.; Tian, L. Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim. Chang. 2014, 125, 281–290. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, T.; Liu, M.; Chen, Y.; Shang, H.; Zhu, L.; Shedayi, A.A.; Yu, H.; Cheng, G.; Liu, G. Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth-Sci. Rev. 2018, 185, 308–324. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Shao, Q.; Liu, R. Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau. Clim. Chang. 2011, 109, 479–502. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, X.; Wang, Z.; Gao, X.; Qu, G.; Li, W.; Li, J.; Lu, H.; Wang, Y. The dynamics of Paiku Co lake area in response to climate change. J. Water Clim. Chang. 2022, 13, 2725–2746. [Google Scholar] [CrossRef]
- Bian, D.; Bian, B.; La, B.; Wang, C.; Chen, T. The response of water level of Selin Co to climate change during 1975–2008. Acta Geogr. Sin. 2010, 65, 313–319. [Google Scholar] [CrossRef]
- Li, W.; Zhao, B.; Xu, Q.; Scaringi, G.; Lu, H.; Huang, R. More frequent glacier-rock avalanches in Sedongpu gully are blocking the Yarlung Zangbo River in eastern Tibet. Landslides 2022, 19, 589–601. [Google Scholar] [CrossRef]
- Su, P.; Liu, J.; Li, Y.; Liu, W.; Wang, Y.; Ma, C.; Li, Q. Changes in glacial lakes in the Poiqu River basin in the central Himalayas. Hydrol. Earth Syst. Sci. 2021, 25, 5879–5903. [Google Scholar] [CrossRef]
- Radić, V.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 2014, 42, 37–58. [Google Scholar] [CrossRef]
- Jiang, S.; Nie, Y.; Liu, Q.; Wang, J.; Liu, L.; Hassan, J.; Liu, X.; Xu, X. Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong river basin, central Himalayas, between 1988 and 2015. Remote Sens. 2018, 10, 986. [Google Scholar] [CrossRef]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–773. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Kanae, S.; Emori, S.; Oki, T.; Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J. 2008, 53, 754–772. [Google Scholar] [CrossRef]
- Harrison, S.; Kargel, J.S.; Huggel, C.; Reynolds, J.; Shugar, D.H.; Betts, R.A.; Emmer, A.; Glasser, N.; Haritashya, U.K.; Klimeš, J. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 2018, 12, 1195–1209. [Google Scholar] [CrossRef]
- Gurung, D.R.; Khanal, N.R.; Bajracharya, S.R.; Tsering, K.; Joshi, S.; Tshering, P.; Chhetri, L.K.; Lotay, Y.; Penjor, T. Lemthang Tsho glacial Lake outburst flood (GLOF) in Bhutan: Cause and impact. Geoenviron. Disasters 2017, 4, 17. [Google Scholar] [CrossRef]
- Wang, S.; Che, Y.; Xinggang, M. Integrated risk assessment of glacier lake outburst flood (GLOF) disaster over the Qinghai–Tibetan Plateau (QTP). Landslides 2020, 17, 2849–2863. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Gao, T.; An, B.; Yao, T. An integrative method for identifying potentially dangerous glacial lakes in the Himalayas. Sci. Total Environ. 2022, 806, 150442. [Google Scholar] [CrossRef]
- Miles, E.S.; Watson, C.S.; Brun, F.; Berthier, E.; Esteves, M.; Quincey, D.J.; Miles, K.E.; Hubbard, B.; Wagnon, P. Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. Cryosphere 2018, 12, 3891–3905. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V.; Zapata, M. Hazard mitigation of glacial lake outburst floods in the Cordillera Blanca (Peru): The effectiveness of remedial works. J. Flood Risk Manag. 2018, 11, S489–S501. [Google Scholar] [CrossRef]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Kumar, A.; Verma, A.; Tiwari, S.; Misra, A. Ice-dams, outburst floods, and movement heterogeneity of glaciers, Karakoram. Glob. Planet. Chang. 2019, 180, 100–116. [Google Scholar] [CrossRef]
- Liu, Q.; Mayer, C.; Wang, X.; Nie, Y.; Wu, K.; Wei, J.; Liu, S. Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya. Earth Planet. Sci. Lett. 2020, 546, 116450. [Google Scholar] [CrossRef]
Data Classification | Name | Resolution | Data Source |
---|---|---|---|
Remote sensing imagery data | Landsat4/5 TM | 1990.9.15 | USGS (https://glovis.usgs.gov/ (accessed on 1 January 2021)) |
Landsat4/5 TM | 1995.10.13 | ||
Landsat7 ETM+ | 2000.11.4 | ||
Landsat5 TM | 2005.11.12 | ||
Landsat8 OLI | 2010.11.16 | ||
Landsat8 OLI | 2015.11.24 | ||
Landsat8 OLI | 2020.10.9 | ||
GF-1 | 2018.10.10 | Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 1 January 2021)) | |
GF-1 | 2019.10.5 | ||
SRTM | DEM data | USGS (https://glovis.usgs.gov/ (accessed on 1 January 2021)) | |
Meteorological data | Meteorological station | Forms for report | Meteorological Data Center of China Meteorological Administration (http://cdc.cma.gov.cn/home.do (accessed on 1 January 2021)) |
Zone | Administrative boundary vector | Vector data | Resource and Environment Science and Data Center (https://www.resdc.cn/ (accessed on 1 January 2021)) |
Time (Year) | Area (km2) | Number (pcs) | Change in Area from the Previous Period (km2) | Change in Number from the Previous Period (pcs) |
---|---|---|---|---|
1990 | 27.942658 | 53 | ||
1995 | 29.210104 | 51 | 1.267446 | −2 |
2000 | 32.739735 | 55 | 3.529631 | 4 |
2005 | 33.861283 | 52 | 1.121548 | −3 |
2010 | 37.055987 | 49 | 3.194704 | −3 |
2015 | 41.941051 | 56 | 4.885064 | 7 |
2020 | 52.846172 | 63 | 10.90512 | 7 |
Altitude (m) | Current (2020) Total Area (km2) | Moraine-Dammed Lake | U-type Valley Lake | Cirque Lake | Glacial Erosion Lake | Lateral Moraine Lake | Total Area of Increase (km2) | Number of Lakes Showing Areal Increases | Number of Lakes Showing No Increase in Area |
---|---|---|---|---|---|---|---|---|---|
<5000 | 1.44 | 6 | 2 | 1 | 1 | 0.314 | 3 | 7 | |
5000–5100 | 7.91 | 3 | 1 | 1 | 1 | 3.017 | 5 | 1 | |
5100–5200 | 3.45 | 5 | 3 | 2 | 0.106 | 7 | 5 | ||
5200–5300 | 7.51 | 12 | 1 | 2.384 | 10 | 3 | |||
5300–5400 | 14.31 | 14 | 1 | 1 | 2.263 | 14 | 2 | ||
>5400 | 1.109 | 8 | 0.006 | 2 | 6 |
Status | Misclassification Error (%) | Omission Error (%) | Kappa Coefficient |
---|---|---|---|
Half icing | 0.67 | 1.40 | 0.86 |
Total icing | 0.55 | 1.08 | 0.90 |
Unfrozen | 0.23 | 0.86 | 0.92 |
1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 | |
---|---|---|---|---|
Glacial lake growth area (km2) | 0.699 | 1.051 | 0.13 | 1.88 |
Annual temperature (°C) | 3.69 | 4.312 | 4.158 | 4.042 |
Summer temperature (°C) | 10.2919 | 10.6067 | 10.4191 | 10.441 |
Winter temperature (°C) | −2.897 | −1.673 | −1.987 | −2.2 |
Annual precipitation (mm) | 551.76 | 613.08 | 632.93 | 595.51 |
Summer precipitation (mm) | 203.63 | 198.86 | 220.95 | 206.36 |
Precipitation in winter (mm) | 99.72 | 102.79 | 141.1 | 111.6 |
Sunshine hours (h) | 2515.49 | 2477.95 | 2507.76 | 2499.58 |
Average wind speed (m/s) | 4.686 | 4.063 | 4.069 | 4.29 |
Average relative humidity (%) | 67.39 | 67.71 | 62.9 | 66.34 |
(a) Interaction_detector | |||||
Sunshine hours | Average temperature | Wind speed | Relative humidity | Precipitation | |
Sunshine hours | 0.082 | ||||
Average temperature | 0.270 | 0.073 | |||
Wind speed | 0.492 | 0.248 | 0.193 | ||
Relative humidity | 0.559 | 0.557 | 0.606 | 0.451 | |
Precipitation | 0.531 | 0.558 | 0.732 | 0.677 | 0.342 |
(b) Sig. F test: 0.05 | |||||
Temperature | Precipitation | Humidity | |||
Temperature | |||||
Precipitation | Y | ||||
Humidity | Y | Y | |||
q statistic | 0.997703117 | 0.999494156 | 0.994113327 |
Coefficients a | ||||||||
---|---|---|---|---|---|---|---|---|
Model | Unstandardized Coefficient | Standardized Coefficient | t | Sig. | Covariance Statistics | |||
B | Standard Error | Trial Version | Tolerance | VIF | ||||
1 | (Constant) | 163.126 | 46.453 | 3.512 | 0.002 | |||
Sunshine hours | −0.010 | 0.012 | −0.134 | −0.825 | 0.419 | 0.926 | 1.080 | |
Average temperature | −2.462 | 2.180 | −0.239 | −1.130 | 0.271 | 0.546 | 1.833 | |
Average wind speed | −6.922 | 3.013 | −0.513 | −2.298 | 0.032 | 0.490 | 2.040 | |
Average relative humidity | −0.961 | 0.256 | −0.660 | −3.758 | 0.001 | 0.791 | 1.264 | |
Precipitation | −0.006 | 0.009 | −0.122 | −0.674 | 0.508 | 0.746 | 1.341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, G.; Dai, X.; Cheng, J.; Li, W.; Wang, M.; Liu, W.; Yang, Z.; Shan, Y.; Ren, J.; Lu, H.; et al. Characterization of Long-Time Series Variation of Glacial Lakes in Southwestern Tibet: A Case Study in the Nyalam County. Remote Sens. 2022, 14, 4688. https://doi.org/10.3390/rs14194688
Qu G, Dai X, Cheng J, Li W, Wang M, Liu W, Yang Z, Shan Y, Ren J, Lu H, et al. Characterization of Long-Time Series Variation of Glacial Lakes in Southwestern Tibet: A Case Study in the Nyalam County. Remote Sensing. 2022; 14(19):4688. https://doi.org/10.3390/rs14194688
Chicago/Turabian StyleQu, Ge, Xiaoai Dai, Junying Cheng, Weile Li, Meilian Wang, Wenxin Liu, Zhichong Yang, Yunfeng Shan, Jiashun Ren, Heng Lu, and et al. 2022. "Characterization of Long-Time Series Variation of Glacial Lakes in Southwestern Tibet: A Case Study in the Nyalam County" Remote Sensing 14, no. 19: 4688. https://doi.org/10.3390/rs14194688
APA StyleQu, G., Dai, X., Cheng, J., Li, W., Wang, M., Liu, W., Yang, Z., Shan, Y., Ren, J., Lu, H., Wang, Y., Zeng, B., & Atasoy, M. (2022). Characterization of Long-Time Series Variation of Glacial Lakes in Southwestern Tibet: A Case Study in the Nyalam County. Remote Sensing, 14(19), 4688. https://doi.org/10.3390/rs14194688