Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Fine LAI Reference Maps
2.2.2. Surface Reflectance Data
2.2.3. LAI Products
3. Methodology
3.1. Fusion of Multiple LAI Products
3.2. Estimating Time-Series LAI Based on the LSTM Model
3.2.1. LSTM Principle
3.2.2. Time-Series LAI Estimations Using the LSTM Model
3.3. Assessment of Our Proposed Method
4. Results
4.1. Theoretical Performance
4.2. Independent Validation against Fine-Resolution LAI Reference Maps
4.3. Effects of the Fused MODIS and VIIRS LAIs on the Accuracy of the LSTM Algorithm
4.4. Temporal Analysis of the LSTMfusion LAI
4.5. Spatial Distribution of the LSTMfusion LAI
5. Discussion
5.1. Performance of the Proposed Approach
5.2. Sensitivity of the Proposed Approach on Noisy Reflectance Inputs
5.3. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, H.; Ye, Y.; Liu, W.; Wei, S.; Ma, L. Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: An investigation of the PASTIS-57 instrument and smartphone applications. Agric. For. Meteorol. 2018, 253, 48–61. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Running, S.W.; Baldocchi, D.D.; Turner, D.P.; Gower, S.T.; Bakwin, P.S.; Hibbard, K.A. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 1999, 70, 108–127. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, H.; Li, A.; Shao, H.; Xie, X.; Lei, G.; Nan, X.; Hu, G.; Fan, W. Comprehensive Assessment of Performances of Long Time-Series LAI, FVC and GPP Products over Mountainous Areas: A Case Study in the Three-River Source Region, China. Remote Sens. 2022, 14, 61. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Chen, C.; Xu, B.; Song, W.; Yang, B.; Zeng, Y.; Liu, Z.; Yan, G.; Knyazikhin, Y.; et al. Generating global products of LAI and FPAR from SNPP-VIIRS data: Theoretical background and implementation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2119–2137. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Wang, J.D.; Xiang, Y.; Zhao, X.; Song, J.L. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Wang, J.D.; Chen, P.; Yin, X.J.; Zhang, L.Q.; Song, J.L. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Diner, D.J.; Running, S.W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res.-Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef]
- Jiang, C.; Ryu, Y.; Fang, H.; Myneni, R.; Claverie, M.; Zhu, Z. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Chang. Biol. 2017, 23, 4133–4146. [Google Scholar] [CrossRef]
- Fang, H.L.; Liang, S.L.; Townshend, J.R.; Dickinson, R.E. Spatially and temporally continuous LAI data sets based on an integrated filtering method: Examples from North America. Remote Sens. Environ. 2008, 112, 75–93. [Google Scholar] [CrossRef]
- Yuan, H.; Dai, Y.; Xiao, Z.; Ji, D.; Shangguan, W. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ. 2011, 115, 1171–1187. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M. A multisensor fusion approach to improve LAI time series. Remote Sens. Environ. 2011, 115, 2460–2470. [Google Scholar] [CrossRef]
- Jin, H.; Li, A.; Yin, G.; Xiao, Z.; Bian, J.; Nan, X.; Jing, J. A Multiscale Assimilation Approach to Improve Fine-Resolution Leaf Area Index Dynamics. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8153–8168. [Google Scholar] [CrossRef]
- Koetz, B.; Baret, F.; Poilve, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [Google Scholar] [CrossRef]
- Huang, J.X.; Tian, L.Y.; Liang, S.L.; Ma, H.Y.; Becker-Reshef, I.; Huang, Y.B.; Su, W.; Zhang, X.D.; Zhu, D.H.; Wu, W.B. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef]
- Jin, H.; Xu, W.; Li, A.; Xie, X.; Zhang, Z.; Xia, H. Spatially and Temporally Continuous Leaf Area Index Mapping for Crops through Assimilation of Multi-resolution Satellite Data. Remote Sens. 2019, 11, 2517. [Google Scholar] [CrossRef]
- Reichle, R.H. Data assimilation methods in the Earth sciences. Adv. Water Resour. 2008, 31, 1411–1418. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Tian, Y.; Liu, Q.; Zhou, L. Dynamics of leaf area for climate and weather models. J. Geophys. Res. Atmos. 2008, 113, D16115. [Google Scholar] [CrossRef]
- Han, X.; Li, X. An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sens. Environ. 2008, 112, 1434–1449. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Huang, C.; Tang, S.; Qi, W. Maize Leaf Area Index Retrieval Using FY-3B Satellite Data by Long Short-Term Memory Model. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium (IGARS2019) 2019, Yokohama, Japan, 28 July–2 August 2019; pp. 146–149. [Google Scholar]
- Ze-hao, L.; Qi-ming, Q.; Tian-yuan, Z.; Wei, X. Prediction of continuous time series leaf area index based on long short-term memory network:a case study of winter wheat. Spectrosc. Spectr. Anal. 2020, 40, 898–904. [Google Scholar]
- Ma, H.; Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112985. [Google Scholar] [CrossRef]
- Liu, D.; Jia, K.; Xia, M.; Wei, X.; Yao, Y.; Zhang, X.; Tao, G. Fractional Vegetation Cover Estimation Algorithm based on Recurrent Neural Network for MODIS 250 m reflectance data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6532–6543. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, Y.; Wei, S.; Li, W.; Ye, Y.; Sun, T.; Liu, W. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China. Remote Sens. Environ. 2019, 233, 111377. [Google Scholar] [CrossRef]
- PANGAEA. Available online: https://doi.pangaea.de/10.1594/PANGAEA.900090 (accessed on 20 August 2021).
- Center for Resource Satellite Data and Applications (CRESDA). Available online: http://218.247.138.119:7777/DSSPlatform/index.html (accessed on 20 August 2021).
- United States Geological Survey (USGS) EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 20 August 2021).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 20 August 2021).
- Kuusk, A. A two-layer canopy reflectance model. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 1–9. [Google Scholar] [CrossRef]
- Earth Science Data Systems (ESDS). Available online: https://earthdata.nasa.gov/ (accessed on 20 August 2021).
- Global LAnd Surface (GLASS)—UMD. Available online: http://glass.umd.edu/ (accessed on 20 August 2021).
- Knyazikhin, Y.; Martonchik, J.V.; Diner, D.J.; Myneni, R.B.; Verstraete, M.; Pinty, B.; Gobron, N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J. Geophys. Res.-Atmos. 1998, 103, 32239–32256. [Google Scholar] [CrossRef]
- Land Processes Distributed Active Archive Center (LP DAAC). Available online: https://lpdaac.usgs.gov/ (accessed on 20 August 2021).
- Beck, P.S.A.; Atzberger, C.; Hogda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Baek, Y.; Kim, H.Y. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Syst. Appl. 2018, 113, 457–480. [Google Scholar] [CrossRef]
- de Castro Filho, H.C.; de Carvalho Júnior, O.A.; de Carvalho, O.L.F.; de Bem, P.P.; dos Santos de Moura, R.; de Albuquerque, A.O.; Silva, C.R.; Ferreira, P.H.G.; Guimarães, R.F.; Gomes, R.A.T. Rice crop detection using LSTM, Bi-LSTM, and machine learning models from sentinel-1 time series. Remote Sens. 2020, 12, 2655. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M. Improved LAI algorithm implementation to MODIS data by incorporating background, topography, and foliage clumping information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1076–1088. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Iliopoulou, T.; Sargentis, G.-F.; Koutsoyiannis, D. Spatial Hurst–Kolmogorov Clustering. Encyclopedia 2021, 1, 1010–1025. [Google Scholar] [CrossRef]
- Xu, J.; Yang, J.; Xiong, X.; Li, H.; Huang, J.; Ting, K.C.; Ying, Y.; Lin, T. Towards interpreting multi-temporal deep learning models in crop mapping. Remote Sens. Environ. 2021, 264, 112599. [Google Scholar] [CrossRef]
- Frintrop, S.; Rome, E.; Christensen, H.I. Computational visual attention systems and their cognitive foundations. ACM Trans. Appl. Percept. 2010, 7, 1–39. [Google Scholar] [CrossRef]
- Dimitriadis, P.; Koutsoyiannis, D.; Iliopoulou, T.; Papanicolaou, P. A Global-Scale Investigation of Stochastic Similarities in Marginal Distribution and Dependence Structure of Key Hydrological-Cycle Processes. Hydrology 2021, 8, 59. [Google Scholar] [CrossRef]
- Bashir, B.; Cao, C.; Naeem, S.; Joharestani, M.Z.; Bo, X.; Afzal, H.; Jamal, K.; Mumtaz, F. Spatio-Temporal Vegetation Dynamic and Persistence under Climatic and Anthropogenic Factors. Remote Sens. 2020, 12, 2612. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
Plot | Longitude | Latitude | Crop Type |
---|---|---|---|
A | 126.838°E | 47.410°N | Maize |
B | 126.838°E | 47.405°N | Soybean |
C | 126.805°E | 47.401°N | Soybean |
D | 126.798°E | 47.409°N | Maize |
E | 126.801°E | 47.429°N | Sorghum |
Model | R2 | RMSE | Bias |
---|---|---|---|
LSTMfusion | 0.96 | 0.27 | −0.02 |
LSTMGLASS | 0.98 | 0.20 | 0.01 |
LSTMMODIS | 0.88 | 0.61 | −0.03 |
LSTMVIIRS | 0.80 | 0.67 | 0.07 |
DOY | LSTMfusion | LSTMGLASS | LSTMMODIS | LSTMVIIRS | DLF | GLASS | MODIS | VIIRS |
---|---|---|---|---|---|---|---|---|
177 | 1.26 | 1.61 | 1.63 | 1.56 | 1.41 | 1.29 | 1.37 | 1.25 |
185 | 1.01 | 1.28 | 2.04 | 1.66 | 1.32 | 1.10 | 2.99 | 1.73 |
193 | 0.61 | 0.57 | 1.29 | 0.71 | 0.71 | 0.78 | 1.85 | 1.39 |
201 | 1.43 | 1.49 | 0.89 | 0.98 | 1.35 | 1.71 | 1.38 | 1.08 |
209 | 0.84 | 0.96 | 0.91 | 0.61 | 0.98 | 1.32 | 2.55 | 2.53 |
217 | 0.66 | 0.70 | 1.01 | 0.66 | 1.02 | 1.18 | 2.45 | 4.06 |
225 | 0.51 | 0.53 | 1.46 | 0.62 | 0.92 | 0.79 | 1.95 | 1.60 |
233 | 0.68 | 0.67 | 1.02 | 0.82 | 0.85 | 1.01 | 1.42 | 1.32 |
241 | 0.46 | 0.49 | 1.53 | 0.56 | 0.71 | 0.69 | 1.00 | 0.75 |
257 | 0.42 | 0.55 | 0.56 | 0.57 | 0.43 | 0.51 | 0.42 | 0.49 |
265 | 0.43 | 0.35 | 0.58 | 0.88 | 0.55 | 0.44 | 0.71 | 0.63 |
DOY | LSTMfusion | LSTMGLASS | LSTMMODIS | LSTMVIIRS | DLF | GLASS | MODIS | VIIRS |
---|---|---|---|---|---|---|---|---|
177 | 0.26 | 0.02 | 0.05 | 0.26 | 0.00 | 0.02 | 0.05 | 0.04 |
185 | 0.40 | 0.08 | 0.42 | 0.15 | 0.08 | 0.08 | 0.00 | 0.42 |
193 | 0.47 | 0.21 | 0.59 | 0.31 | 0.15 | 0.19 | 0.00 | 0.37 |
201 | 0.47 | 0.22 | 0.58 | 0.29 | 0.15 | 0.20 | 0.07 | 0.23 |
209 | 0.52 | 0.20 | 0.58 | 0.47 | 0.17 | 0.193 | 0.25 | 0.10 |
217 | 0.64 | 0.09 | 0.59 | 0.58 | 0.11 | 0.09 | 0.04 | 0.26 |
225 | 0.66 | 0.19 | 0.67 | 0.61 | 0.25 | 0.20 | 0.03 | 0.03 |
233 | 0.72 | 0.17 | 0.69 | 0.68 | 0.27 | 0.17 | 0.20 | 0.14 |
241 | 0.73 | 0.17 | 0.72 | 0.69 | 0.24 | 0.17 | 0.42 | 0.47 |
257 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.27 | 0.24 |
265 | 0.04 | 0.01 | 0.23 | 0.13 | 0.01 | 0.00 | 0.12 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Jin, H.; Li, A.; Fang, H.; Wei, D.; Xie, X.; Nan, X. Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method. Remote Sens. 2022, 14, 4733. https://doi.org/10.3390/rs14194733
Liu T, Jin H, Li A, Fang H, Wei D, Xie X, Nan X. Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method. Remote Sensing. 2022; 14(19):4733. https://doi.org/10.3390/rs14194733
Chicago/Turabian StyleLiu, Tian, Huaan Jin, Ainong Li, Hongliang Fang, Dandan Wei, Xinyao Xie, and Xi Nan. 2022. "Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method" Remote Sensing 14, no. 19: 4733. https://doi.org/10.3390/rs14194733
APA StyleLiu, T., Jin, H., Li, A., Fang, H., Wei, D., Xie, X., & Nan, X. (2022). Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method. Remote Sensing, 14(19), 4733. https://doi.org/10.3390/rs14194733