Improving the Reconstruction of Vertical Temperature Profiles on Account of Oceanic Front Impacts
Abstract
:1. Introduction
2. Data and Pre-Processing
2.1. Sea Surface Variables
2.2. Argo Profiles
3. Reconstruction Model
3.1. Model Structure
3.2. Data Normalization
3.3. Experiment Setup
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrett, C.; Munk, W. Internal Waves in the Ocean. Annu. Rev. Fluid Mech. 1979, 11, 339–369. [Google Scholar] [CrossRef]
- Sabinin, K.; Serebryany, A. Intense short-period internal waves in the ocean. J. Mar. Res. 2005, 63, 227–261. [Google Scholar] [CrossRef]
- Siegelman, L.; Klein, P.; Thompson, A.F.; Torres, H.S.; Menemenlis, D. Altimetry-Based Diagnosis of Deep-Reaching Sub-Mesoscale Ocean Fronts. Fluids 2020, 5, 145. [Google Scholar] [CrossRef]
- Wang, J.; Bethel, B.J.; Dong, C.; Li, C.; Cao, Y. Numerical Simulation and Observational Data Analysis of Mesoscale Eddy Effects on Surface Waves in the South China Sea. Remote Sens. 2022, 14, 1463. [Google Scholar] [CrossRef]
- Jayne, S.R.; Roemmich, D.; Zilberman, N.; Riser, S.C.; Johnson, K.S.; Johnson, G.C.; Piotrowicz, S.R. Present and Future. Oceanography 2017, 30, 18–28. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef]
- Reul, N.; Grodsky, S.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Carnes, M.R.; Mitchell, J.L.; de Witt, P.W. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles. J. Geophys. Res. Ocean. 1990, 95, 17979–17992. [Google Scholar] [CrossRef]
- Carnes, M.R.; Teague, W.J.; Mitchell, J.L. Inference of Subsurface Thermohaline Structure from Fields Measurable by Satellite. J. Atmos. Ocean. Technol. 1994, 11, 551–566. [Google Scholar] [CrossRef]
- Klemas, V.; Yan, X.H. Subsurface and deeper ocean remote sensing from satellites: An overview and new results. Prog. Oceanogr. 2014, 122, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Flierl, G.R.; LaCasce, J.H.; McClean, J.L.; Mahadevan, A. Reconstructing the Ocean’s Interior from Surface Data. J. Phys. Oceanogr. 2013, 43, 1611–1626. [Google Scholar] [CrossRef]
- Liu, L.; Xue, H.; Sasaki, H. Reconstructing the Ocean Interior from High-Resolution Sea Surface Information. J. Phys. Oceanogr. 2019, 49, 3245–3262. [Google Scholar] [CrossRef]
- Yan, H.; Wang, H.; Zhang, R.; Chen, J.; Bao, S.; Wang, G. A Dynamical-Statistical Approach to Retrieve the Ocean Interior Structure From Surface Data: SQG-mEOF-R. J. Geophys. Res. Ocean. 2020, 125, e2019JC015840. [Google Scholar] [CrossRef]
- Moore, A.M.; Martin, M.J.; Akella, S.; Arango, H.G.; Balmaseda, M.; Bertino, L.; Ciavatta, S.; Cornuelle, B.; Cummings, J.; Frolov, S.; et al. Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean. Front. Mar. Sci. 2019, 6, 90. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X.H. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar] [CrossRef]
- Guinehut, S.; Dhomps, A.L.; Larnicol, G.; Traon, P.Y.L. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci. 2012, 8, 845–857. [Google Scholar] [CrossRef]
- Liu, L.; Peng, S.; Wang, J.; Huang, R.X. Retrieving density and velocity fields of the ocean’s interior from surface data. J. Geophys. Res. Ocean. 2014, 119, 8512–8529. [Google Scholar] [CrossRef]
- Yan, X.H.; Jo, Y.H.; Liu, W.T.; He, M.X. A New Study of the Mediterranean Outflow, Air–Sea Interactions and Meddies Using Multisensor Data. J. Phys. Oceanogr. 2006, 36, 691–710. [Google Scholar] [CrossRef]
- Yan, X.H.; Okubo, A. Three-dimensional analytical model for the mixed layer depth. J. Geophys. Res. Ocean. 1992, 97, 20201–20226. [Google Scholar] [CrossRef]
- Lapeyre, G.; Klein, P. Dynamics of the Upper Oceanic Layers in Terms of Surface Quasigeostrophy Theory. J. Phys. Oceanogr. 2006, 36, 165–176. [Google Scholar] [CrossRef]
- Fox, D.N.; Teague, W.J.; Barron, C.N.; Carnes, M.R.; Lee, C.M. The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Ocean. Technol. 2002, 19, 240–252. [Google Scholar] [CrossRef]
- Maes, C.; Behringer, D.; Reynolds, R.W.; Ji, M. Retrospective Analysis of the Salinity Variability in the Western Tropical Pacific Ocean Using an Indirect Minimization Approach. J. Atmos. Ocean. Technol. 2000, 17, 512–524. [Google Scholar] [CrossRef]
- Nardelli, B.B.; Santoleri, R. Methods for the Reconstruction of Vertical Profiles from Surface Data: Multivariate Analyses, Residual GEM and Variable Temporal Signals in the North Pacific Ocean. J. Atmos. Ocean. Technol. 2005, 22, 1762–1781. [Google Scholar] [CrossRef]
- Su, H.; Huang, L.; Li, W.; Yang, X.; Yan, X.H. Retrieving Ocean Subsurface Temperature Using a Satellite-Based Geographically Weighted Regression Model. J. Geophys. Res. Ocean. 2018, 123, 5180–5193. [Google Scholar] [CrossRef]
- Ali, M.M.; Swain, D.; Weller, R.A. Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Wu, X.; Yan, X.H.; Jo, Y.H.; Liu, W.T. Estimation of Subsurface Temperature Anomaly in the North Atlantic Using a Self-Organizing Map Neural Network. J. Atmos. Ocean. Technol. 2012, 29, 1675–1688. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Yan, X.H.; Kidwell, A. Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach. Remote Sens. Environ. 2015, 160, 63–71. [Google Scholar] [CrossRef]
- Su, H.; Li, W.; Yan, X.H. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations. J. Geophys. Res. Ocean. 2018, 123, 399–410. [Google Scholar] [CrossRef]
- Su, H.; Yang, X.; Lu, W.; Yan, X.H. Estimating Subsurface Thermohaline Structure of the Global Ocean Using Surface Remote Sensing Observations. Remote Sens. 2019, 11, 1598. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Wang, A.; Zhang, T.; Qin, T.; Du, X.; Yan, X.H. Super-resolution of subsurface temperature field from remote sensing observations based on machine learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102440. [Google Scholar] [CrossRef]
- Meng, L.; Yan, C.; Zhuang, W.; Zhang, W.; Geng, X.; Yan, X.H. Reconstructing High-Resolution Ocean Subsurface and Interior Temperature and Salinity Anomalies From Satellite Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Zuo, X.; Zhou, X.; Guo, D.; Li, S.; Liu, S.; Xu, C. Ocean Temperature Prediction Based on Stereo Spatial and Temporal 4-D Convolution Model. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Bolton, T.; Zanna, L. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization. J. Adv. Model. Earth Syst. 2019, 11, 376–399. [Google Scholar] [CrossRef]
- Nardelli, B.B. A Deep Learning Network to Retrieve Ocean Hydrographic Profiles from Combined Satellite and In Situ Measurements. Remote Sens. 2020, 12, 3151. [Google Scholar] [CrossRef]
- Su, H.; Jiang, J.; Wang, A.; Zhuang, W.; Yan, X.H. Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning. Remote Sens. 2022, 14, 3198. [Google Scholar] [CrossRef]
- Lu, W.; Su, H.; Yang, X.; Yan, X.H. Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sens. Environ. 2019, 229, 213–222. [Google Scholar] [CrossRef]
- Fevre, J.L. Aspects of the Biology of Frontal Systems. Adv. Mar. Biol. 1987, 23, 163–299. [Google Scholar] [CrossRef]
- Olson, D.; Hitchcock, G.; Mariano, A.; Ashjian, C.; Peng, G.; Nero, R.; Podest, G.; Hjort, J. Life on the Edge: Marine Life and Fronts. Oceanography 1994, 7, 52–60. [Google Scholar] [CrossRef]
- Belkin, I.M.; Cornillon, P.C.; Sherman, K. Fronts in Large Marine Ecosystems. Prog. Oceanogr. 2009, 81, 223–236. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Li, H.; Hu, D.; Chen, C.; He, Y. Impact of ocean fronts on the reconstruction of vertical temperature profiles from sea surface measurements. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 187, 103833. [Google Scholar] [CrossRef]
- Badulin, S.; Kostianoy, A.; Shabanov, P.; Sharmar, V.; Grigorieva, V.; Lebedev, S. Self- and Inter-Crossover Points of Jasons’ Missions as New Essential Add-on of Satellite Altimetry in the Sub-Arctic Seas and the Southern Ocean. Remote Sens. 2021, 13, 658. [Google Scholar] [CrossRef]
- Leung, F.; Lam, H.; Ling, S.; Tam, P. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 2003, 14, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Zhou, D.Z.; Tang, Y.; Yang, Z.; Cao, Y.; Gu, Q. Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama, Japan, 7–15 July 2021; pp. 3267–3275. [Google Scholar]
- Xi, J.; Wang, Y.; Feng, Z.; Liu, Y.; Guo, X. Variability and Intensity of the Sea Surface Temperature Front Associated with the Kuroshio Extension. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
Model | Normalization | Layers | Activation Function | Optimizer |
---|---|---|---|---|
Model 1 | Not | 1-12-6-1 | R-R-L 1 | Sgd |
Model 2 | Not | 1-12-6-1 | R-R-L | Adam |
Model 3 | MinMaxscaler() | 1-12-6-1 | R-R-L | Sgd |
Model 4 | MinMaxScaler() | 1-12-6-1 | R-R-L | Adam |
Model | Input | Structure | Activation Function |
---|---|---|---|
Model 5 | SST, SLA, Month, Lon, Lat | 5× 8× 16× 32 × 64 × 128 × 51 | L-L-L-L-L-L |
Model 6 | SST, SLA, Month, , Lon, Lat | 6× 8× 16× 32 × 64 × 128 × 51 | L-L-L-L-L-L |
Model 7 | SST, SLA, Month, , Lon, Lat | 6× 8× 16× 32 × 64 × 128 × 51 | R-R-R-R-R-L |
Model 8 | SST, SLA, Month, , Lon, Lat | 6× 8× 16× 32 × 64 × 128 × 512 × 51 | R-R-R-R-R-R-L 1 |
Model 9 | SST, SLA, Month, Lon, Lat | 5× 8× 16× 32 × 64 × 128 × 512 × 51 | R-R-R-R-R-R-L |
Depth | 50 m | 250 m | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | [C] | RMSE [C] | MAE [C] | SI [%] | [C] | RMSE [C] | MAE [C] | SI [%] | ||
M5 | −0.345 | 2.271 | 1.617 | 0.879 | 1.2 | 0.053 | 2.677 | 2.167 | 0.754 | 3.1 |
M6 | −0.222 | 2.232 | 1.600 | 0.883 | 1.2 | 0.069 | 2.565 | 2.055 | 0.774 | 2.9 |
M7 | 0.008 | 1.525 | 1.091 | 0.945 | 0.5 | 0.027 | 1.048 | 0.669 | 0.962 | 0.5 |
M8 | −0.045 | 1.337 | 0.892 | 0.958 | 0.4 | 0.015 | 0.993 | 0.623 | 0.966 | 0.4 |
M9 | −0.059 | 1.344 | 0.920 | 0.957 | 0.4 | −0.054 | 1.006 | 0.626 | 0.965 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, C.; Li, H.; He, Y. Improving the Reconstruction of Vertical Temperature Profiles on Account of Oceanic Front Impacts. Remote Sens. 2022, 14, 4821. https://doi.org/10.3390/rs14194821
Chen X, Wang C, Li H, He Y. Improving the Reconstruction of Vertical Temperature Profiles on Account of Oceanic Front Impacts. Remote Sensing. 2022; 14(19):4821. https://doi.org/10.3390/rs14194821
Chicago/Turabian StyleChen, Xin, Chen Wang, Huimin Li, and Yijun He. 2022. "Improving the Reconstruction of Vertical Temperature Profiles on Account of Oceanic Front Impacts" Remote Sensing 14, no. 19: 4821. https://doi.org/10.3390/rs14194821
APA StyleChen, X., Wang, C., Li, H., & He, Y. (2022). Improving the Reconstruction of Vertical Temperature Profiles on Account of Oceanic Front Impacts. Remote Sensing, 14(19), 4821. https://doi.org/10.3390/rs14194821