Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data and Input Bands
2.3. Computation of Vegetation Indices
Vegetation Indices | Formula | Reference | |
---|---|---|---|
VIs | NDVI (Normalized Difference Vegetation Index) | (NIR − Red)/(NIR + Red) | [30] |
SAVI (Soil Adjusted Vegetation Index) | [33] | ||
NDWI (Normalized Difference Water Index) | (Green − NIR)/(Green + NIR) | [36] | |
EVI (Enhanced Vegetation Index) | [39] | ||
MSIs | MI (Mangrove Index) | (NIR − SWIR1/NIR × SWIR1) × 10,000 | [27] |
NDMI (Normalized Difference Mangrove Index) | SWIR2 − Green/SWIR2 + Green | [28] | |
CMRI (Combined Mangrove Recognition Index) | NDVI − NDWI | [25] | |
SMRI (Submerged Mangrove Recognition Index) | [41] | ||
MDI (Mangrove Discrimination Index) | (NIR − SWIR)/SWIR | [43] | |
MMRI (Modular Mangrove Recognition Index) | (|MNDWI| − |NDVI|)/(|MNDWI| + |NDVI|) | [45] | |
MVI (Mangrove Vegetation Index) | NIR − Green/SWIR1 − Green | [22] | |
L8MI (Landsat 8 Mangrove Index) | [ASST > T] and [SAVI > T] | [7] |
2.4. Classification Algorithm
2.5. Accuracy Assessment
2.6. Landscape Metrics
3. Results
3.1. Comparison of VIs and MSIs
3.2. Mangrove Area Change Assessment
3.3. Evaluation of Landscape Metrics
4. Discussion
4.1. Robustness of VIs and MSIs in Mangrove Forest Mapping
4.2. Long-Term Changes of Iran’s Mangrove Forests
4.3. Mangrove Forest Monitoring through Landscape Metrics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Mangrove Sites | Study Year | Low-Tide Imagery Date | High-Tide Imagery Date | |
---|---|---|---|---|
Bushehr Province | S1 | 1990 | 19 April 1990 | 25 August 1990 |
2000 | 13 March 2000 | 1 June 2000 | ||
2010 | 17 March 2010 | 20 May 2010 | ||
2020 | 30 October 2020 | 4 March 2020 | ||
S2 | 1990 | 27 March 1990 | 12 April 1990 | |
2000 | 6 March 2000 | 7 April 2000 | ||
2010 | 11 April 2010 | 26 March 2010 | ||
2020 | 3 July 2020 | 13 March 2020 | ||
Hormozgan Province | S3 | 1990 | 8 November 1990 | 13 March 1990 |
2000 | 11 May 2000 | 8 March 2000 | ||
2010 | 11 July 2010 | 12 March 2010 | ||
2020 | 28 February 2020 | 28 December 2020 | ||
S4 | 1990 | 8 November 1990 | 13 March 1990 | |
2000 | 11 May 2000 | 8 March 2000 | ||
2010 | 11 July 2010 | 12 March 2010 | ||
2020 | 28 February 2020 | 28 December 2020 | ||
S5 | 1990 | 22 March 1990 | 3 December 1990 | |
2000 | 7 March 2000 | 20 May 2000 | ||
2010 | 10 December 2010 | 29 March 2010 | ||
2020 | 12 June 2020 | 8 March 2020 | ||
S6 | 1990 | 6 March 1990 | 7 April 1990 | |
2000 | 17 March 2000 | 27 October 2000 | ||
2010 | 10 December 2010 | 29 March 2010 | ||
2020 | 8 March 2020 | 18 October 2020 | ||
S7 | 1990 | 16 April 1990 | 15 March 1990 | |
2000 | 10 March 2000 | 9 February 2001 | ||
2010 | 14 March 2011 | 30 March 2010 | ||
2020 | 1 March 2020 | 17 March 2020 | ||
Sistan and Baluchestan Province | S8 | 1990 | 8 March 1990 | 27 May 1990 |
2000 | 3 March 2000 | 19 March 2000 | ||
2010 | 12 December 2011 | 31 March 2010 | ||
2020 | 10 March 2020 | 18 September 2020 | ||
S9 | 1990 | 28 November 1990 | 17 March 1990 | |
2000 | 12 March 2000 | 25 December 2000 | ||
2010 | 15 December 2011 | 16 March 2010 | ||
2020 | 3 March 2020 | 6 May 2020 |
Satellite and Sensor | Bands | Wavelength (Micrometer) | Spatial Resolution (m) |
---|---|---|---|
Landsat 5 TM | Band 1 | 0.45–0.52 | 30 |
Band 2 | 0.52–0.60 | 30 | |
Band 3 | 0.63–0.69 | 30 | |
Band 4 | 0.76–0.90 | 30 | |
Band 5 | 1.55–1.75 | 30 | |
Band 7 | 2.08–2.35 | 30 | |
Landsat 7 ETM+ | Band 1 | 0.45–0.52 | 30 |
Band 2 | 0.52–0.60 | 30 | |
Band 3 | 0.63–0.69 | 30 | |
Band 4 | 0.77–0.90 | 30 | |
Band 5 | 1.55–1.75 | 30 | |
Band 7 | 2.09–2.35 | 30 | |
Landsat 8 OLI | Band 2 | 0.45–0.51 | 30 |
Band 3 | 0.53–0.59 | 30 | |
Band 4 | 0.64–0.67 | 30 | |
Band 5 | 0.85–0.88 | 30 | |
Band 6 | 1.57–1.65 | 30 | |
Band 7 | 2.11–2.29 | 30 |
References
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Pimple, U.; Simonetti, D.; Hinks, I.; Oszwald, J.; Berger, U.; Pungkul, S.; Leadprathom, K.; Pravinvongvuthi, T.; Maprasoap, P.; Gond, V. A history of the rehabilitation of mangroves and an assessment of their diversity and structure using Landsat annual composites (1987–2019) and transect plot inventories. For. Ecol. Manag. 2020, 462, 118007. [Google Scholar] [CrossRef]
- Binh, N.; Hauser, L.; Hoa, P.; Thao, G.; An, N.; Nhut, H.; Phuong, T.; Verrelst, J. Quantifying mangrove leaf area index from Sentinel-2 imagery using hybrid models and active learning. Int. J. Remote Sens. 2022. [Google Scholar] [CrossRef]
- Peters, R.; Walther, M.; Lovelock, C.; Jiang, J.; Berger, U. The interplay between vegetation and water in mangroves: New perspectives for mangrove stand modelling and ecological research. Wetl. Ecol. Manag. 2020, 28, 697–712. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S.; Chen, B. High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sens. 2021, 13, 1529. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Ali, A.; Alam Nayyar, Z. Extraction of mangrove forest through Landsat 8 Mangrove Index (L8MI). Arab. J. Geosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Bryan-Brown, D.N.; Connolly, R.M.; Richards, D.R.; Adame, F.; Friess, D.A.; Brown, C.J. Global trends in mangrove forest fragmentation. Sci. Rep. 2020, 10, 7177. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations. Global Forest Resources Assessment 2020; Main Report; Food and Agricultural Organization of the United Nations: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Martire, M.L.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Duke, N.C.; Meynecke, J.-O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A World Without Mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Makowski, C.; Finkl, C. Threats to Mangrove Forests; Springer: Cham, Switzerland, 2018; pp. 53–76. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Giri, C. Recent Advancement in Mangrove Forests Mapping and Monitoring of the World Using Earth Observation Satellite Data. Remote Sens. 2021, 13, 563. [Google Scholar] [CrossRef]
- Faridah-Hanum, I.; Latiff, A.; Hakeem, K.R.; Ozturk, M. Mangrove Ecosystems of Asia: Status, Challenges and Management Strategies; Springer: New York, NY, USA, 2014; pp. 95–126. [Google Scholar]
- Mafi-Gholami, D.; Zenner, E.K.; Jaafari, A.; Bui, D.T. Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuar. Coast. Shelf Sci. 2020, 237, 106644. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Mahmoudi, B.; Zenner, E.K. An analysis of the relationship between drought events and mangrove changes along the northern coasts of the Pe rsian Gulf and Oman Sea. Estuar. Coast. Shelf Sci. 2017, 199, 141–151. [Google Scholar] [CrossRef]
- Etemadi, H.; Smoak, J.M.; Abbasi, E. Spatiotemporal pattern of degradation in arid mangrove forests of the Northern Persian Gulf. Oceanologia 2021, 63, 99–114. [Google Scholar] [CrossRef]
- Gandhi, S.; Jones, T.G. Identifying Mangrove Deforestation Hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 2019, 11, 728. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Ana, R.R.C.S.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Giri, C. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef]
- Alatorre, L.C.; Sánchez-Andrés, R.; Cirujano, S.; Beguería, S.; Sánchez-Carrillo, S. Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery. Remote Sens. 2011, 3, 1568–1583. [Google Scholar] [CrossRef]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Majumdar, S.D.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 2018, 5, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Qin, C.-Z.; Li, H.; Huang, C.; Su, F.-Z.; Jia, M.-M. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecol. Indic. 2020, 113, 106196. [Google Scholar] [CrossRef]
- Winarso, G.; Purwanto, A.D.; Yuwono, D.M. New mangrove index as degradation/health indicator using Remote Sensing data: Segara Anakan and Alas Purwo case study. In Proceedings of the 12th Biennial Conference of Pan Ocean Remote Sensing Conference, Bali, Indonesia, 4–7 November 2014. [Google Scholar]
- Shi, T.; Liu, J.; Hu, Z.; Liu, H.; Wang, J.; Wu, G. New spectral metrics for mangrove forest identification. Remote Sens. Lett. 2016, 7, 885–894. [Google Scholar] [CrossRef]
- Hopper, M. WXTide32 Software. 2007. Available online: http://WXTide32.com (accessed on 24 November 2021).
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D.W. Others Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Shimu, S.; Aktar, M.; Afjal, M.; Nitu, A.; Uddin, M.; Al Mamun, M. NDVI based change detection in Sundarban Mangrove Forest using remote sensing data. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 20–22 December 2019; pp. 1–5. [Google Scholar]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Post, D.; Jackson, R. Soil spectral effects on 4-space vegetation discrimination. Remote Sens. Environ. 1984, 15, 155–165. [Google Scholar] [CrossRef]
- George, R.; Padalia, H.; Sinha, S.K.; Kumar, A.S. Evaluation of the Use of Hyperspectral Vegetation Indices for Estimating Mangrove Leaf Area Index in Middle Andaman Island, India. Remote Sens. Lett. 2018, 9, 1099–1108. [Google Scholar] [CrossRef]
- Rhyma, P.P.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Zulfa, A.W. Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sens. Appl. Soc. Environ. 2020, 17, 100280. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Zurmure, N.; Sawant, S.; Shindikar, M.; Lele, N. Mapping the spatio-temporal changes in mangrove vegetation along Thane Creek, India. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7557–7560. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Dash, J.; Atkinson, P.M. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens. Environ. 2018, 205, 71–84. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Wang, L.; Duan, Y.; Zhang, L.; Rehman, T.U.; Ma, D.; Jin, J. Precise Estimation of NDVI with a Simple NIR Sensitive RGB Camera and Machine Learning Methods for Corn Plants. Sensors 2020, 20, 3208. [Google Scholar] [CrossRef]
- Xia, Q.; Qin, C.-Z.; Li, H.; Huang, C.; Su, F.-Z. Mapping Mangrove Forests Based on Multi-Tidal High-Resolution Satellite Imagery. Remote Sens. 2018, 10, 1343. [Google Scholar] [CrossRef]
- Li, W.; El-Askary, H.; Qurban, M.A.; Li, J.; Manikandan, K.; Piechota, T. Using multi-indices approach to quantify mangrove changes over the Western Arabian Gulf along Saudi Arabia coast. Ecol. Indic. 2019, 102, 734–745. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wang, R.; Sun, F.; Wu, X. Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species. Remote Sens. 2018, 10, 1468. [Google Scholar] [CrossRef]
- Mukhtar, E.; Raynaldo, A.; Novarino, W. Carbon stock mapping using mangrove discrimination indices in Mandeh Bay, West Sumatra. Aquacult. Aquarium Conserv. Legis. 2021, 14, 430–440. [Google Scholar]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza-Filho, P.W.M. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Sahadevan, A.S.; Joseph, C.; Gopinath, G.; Ramakrishnan, R.; Gupta, P. Monitoring the rapid changes in mangrove vegetation of coastal urban environment using polynomial trend analysis of temporal satellite data. Reg. Stud. Mar. Sci. 2021, 46, 101871. [Google Scholar] [CrossRef]
- Heumann, B.W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr. Earth Environ. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Kumar, T.; Panigrahy, S.; Kumar, P.; Parihar, J.S. Classification of floristic composition of mangrove forests using hyperspectral data: Case study of Bhitarkanika National Park, India. J. Coast. Conserv. 2013, 17, 121–132. [Google Scholar] [CrossRef]
- Zhen, J.; Liao, J.; Shen, G. Mapping Mangrove Forests of Dongzhaigang Nature Reserve in China Using Landsat 8 and Radarsat-2 Polarimetric SAR Data. Sensors 2018, 18, 4012. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995; Volume 351. [Google Scholar]
- Nababa, I.; Symeonakis, E.; Koukoulas, S.; Higginbottom, T.; Cavan, G.; Marsden, S. Land Cover Dynamics and Mangrove Degradation in the Niger Delta Region. Remote Sens. 2020, 12, 3619. [Google Scholar] [CrossRef]
- Ma, C.; Ai, B.; Zhao, J.; Xu, X.; Huang, W. Change Detection of Mangrove Forests in Coastal Guangdong during the Past Three Decades Based on Remote Sensing Data. Remote Sens. 2019, 11, 921. [Google Scholar] [CrossRef]
- Jafarnia, S.; Oladi, J.; Hoojati, S.; Mir Akhor Loo, K. Status and change detection of Mangrove forest in Qeshm Island using satellite imagery from 1988 to 2008. J. Environ. Sci. Technol. 2016, 18, 177–191. (In Persian) [Google Scholar]
- Toosi, N.B.; Soffianian, A.R.; Fakheran, S.; Pourmanafi, S.; Ginzler, C.; Waser, L.T. Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Glob. Ecol. Conserv. 2019, 19, e00662. [Google Scholar] [CrossRef]
- Danehkar, A.; Erfani, M.; Nori, G.; Aghighi, H.; Marvi Mohajer, M.; Ardakani, T. Detection of mangrove vegetation area changes at Govater Creek in Sistan & Baluchestan province. Iran. J. For. 2012, 4, 197–207. (In Persian) [Google Scholar]
- Goharnejad, H.; Shamsai, A.; Hosseini, S.A. Vulnerability assessment of southern coastal areas of Iran to sea level rise: Evaluation of climate change impact. Oceanologia 2013, 55, 611–637. [Google Scholar] [CrossRef]
- Al-Subhi, A.M.; Abdulla, C.P. Sea-Level Variability in the Arabian Gulf in Comparison with Global Oceans. Remote Sens. 2021, 13, 4524. [Google Scholar] [CrossRef]
- Al Senafi, F. Atmosphere-Ocean Coupled Variability in the Arabian/Persian Gulf. Front. Mar. Sci. 2022, 9, 809355. [Google Scholar] [CrossRef]
Site | Criteria | VIs | MSIs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDVI | SAVI | NDWI | EVI | MI | NDMI | CMRI | SMRI | MDI-1 | MDI-2 | MMRI | MVI | L8MI-1 | L8MI-2 | ||
S2 | Accuracy | 0.77 | 0.86 | 0.87 | 0.87 | 0.58 | 0.95 | 0.89 | 0.95 | 0.45 | 0.41 | 0.67 | 0.95 | 0.95 | 0.94 |
Precision | 0.62 | 0.40 | 0.38 | 0.46 | 0.95 | 0.70 | 0.48 | 0.98 | 0.86 | 0.74 | 0.73 | 0.78 | 0.70 | 0.62 | |
Recall | 0.45 | 0.82 | 0.94 | 0.83 | 0.32 | 0.99 | 0.96 | 0.82 | 0.25 | 0.22 | 0.35 | 0.96 | 0.99 | 0.99 | |
F1-score | 0.53 | 0.53 | 0.55 | 0.6 | 0.48 | 0.82 | 0.64 | 0.89 | 0.39 | 0.34 | 0.48 | 0.86 | 0.82 | 0.77 | |
OA (%) | 77.4 | 86.1 | 87.1 | 87.3 | 58.8 | 95.9 | 89.2 | 95.4 | 41.9 | 45.9 | 67.7 | 95.1 | 94.8 | 95.9 | |
K | 0.64 | 0.77 | 0.78 | 0.79 | 0.40 | 0.80 | 0.82 | 0.94 | 0.12 | 0.18 | 0.48 | 0.90 | 0.74 | 0.80 | |
S6 | Accuracy | 0.87 | 0.93 | 0.89 | 0.94 | 0.89 | 0.94 | 0.90 | 0.97 | 0.88 | 0.65 | 0.67 | 0.90 | 0.97 | 0.95 |
Precision | 0.97 | 0.96 | 0.94 | 0.96 | 0.90 | 0.98 | 0.96 | 0.93 | 0.92 | 0.91 | 0.97 | 0.95 | 0.93 | 0.85 | |
Recall | 0.74 | 0.87 | 0.79 | 0.91 | 0.83 | 0.88 | 0.81 | 0.99 | 0.87 | 0.50 | 0.52 | 0.80 | 0.99 | 0.98 | |
F1-score | 0.84 | 0.91 | 0.86 | 0.93 | 0.86 | 0.93 | 0.88 | 0.96 | 0.89 | 0.65 | 0.68 | 0.87 | 0.96 | 0.91 | |
OA (%) | 87.2 | 89.7 | 89.2 | 85.5 | 95.3 | 97.8 | 95.5 | 96.9 | 81.2 | 42.4 | 50.3 | 96.7 | 95.2 | 97.6 | |
K | 0.81 | 0.90 | 0.83 | 0.83 | 0.89 | 0.90 | 0.91 | 0.97 | 0.69 | 0.23 | 0.31 | 0.90 | 0.91 | 0.91 | |
S9 | Accuracy | 0.93 | 0.95 | 0.90 | 0.95 | 0.76 | 0.95 | 0.95 | 0.96 | 0.66 | 0.57 | 0.78 | 0.95 | 0.95 | 0.95 |
Precision | 0.95 | 0.94 | 0.91 | 0.94 | 0.69 | 0.88 | 0.98 | 0.98 | 0.87 | 0.71 | 0.84 | 0.97 | 0.86 | 0.87 | |
Recall | 0.80 | 0.86 | 0.72 | 0.87 | 0.48 | 0.96 | 0.85 | 0.87 | 0.39 | 0.30 | 0.51 | 0.83 | 0.96 | 0.96 | |
F1-score | 0.87 | 0.90 | 0.81 | 0.91 | 0.57 | 0.92 | 0.91 | 0.92 | 0.54 | 0.42 | 0.63 | 0.90 | 0.91 | 0.91 | |
OA (%) | 91.7 | 85.5 | 80.4 | 84.1 | 76.5 | 98.4 | 90.3 | 94.2 | 66.2 | 57.6 | 73.9 | 89.5 | 97.2 | 96.7 | |
K | 0.90 | 0.83 | 0.74 | 0.73 | 0.65 | 0.91 | 0.85 | 0.95 | 0.49 | 0.36 | 0.60 | 0.84 | 0.92 | 0.90 |
Sites | 1990 | 2000 | ||||||||||
Accuracy | Precision | Recall | F1-Score | OA (%) | K | Accuracy | Precision | Recall | F1-Score | OA (%) | K | |
S1 | 0.91 | 0.86 | 0.74 | 0.80 | 91.8 | 0.87 | 0.88 | 0.90 | 0.64 | 0.75 | 88.7 | 0.82 |
S2 | 0.90 | 0.93 | 0.70 | 0.80 | 90.1 | 0.84 | 0.74 | 0.70 | 0.53 | 0.60 | 91.1 | 0.86 |
S3 and S4 | 0.94 | 0.97 | 0.88 | 0.92 | 94.4 | 0.91 | 0.94 | 0.96 | 0.89 | 0.92 | 94.8 | 0.92 |
S5 | 0.94 | 0.95 | 0.87 | 0.91 | 94.3 | 0.91 | 0.94 | 0.96 | 0.86 | 0.91 | 93.9 | 0.91 |
S6 | 0.94 | 0.95 | 0.88 | 0.91 | 94.2 | 0.91 | 0.94 | 0.95 | 0.89 | 0.92 | 94.8 | 0.92 |
S7 | 0.92 | 0.95 | 0.77 | 0.85 | 93.1 | 0.89 | 0.93 | 0.97 | 0.76 | 0.86 | 93.5 | 0.89 |
S8 | - | - | - | - | - | - | - | - | - | - | - | - |
S9 | 0.95 | 0.94 | 0.89 | 0.92 | 95.7 | 0.93 | 0.96 | 0.95 | 0.90 | 0.92 | 96.1 | 0.94 |
Sites | 2010 | 2020 | ||||||||||
Accuracy | Precision | Recall | F1-Score | OA (%) | K | Accuracy | Precision | Recall | F1-Score | OA (%) | K | |
S1 | 0.85 | 0.83 | 0.58 | 0.68 | 85.6 | 0.77 | 0.89 | 0.86 | 0.66 | 0.75 | 89.4 | 0.83 |
S2 | 0.91 | 0.90 | 0.76 | 0.82 | 91.8 | 0.87 | 0.95 | 0.98 | 0.82 | 0.89 | 95.4 | 0.94 |
S3 and S4 | 0.92 | 0.99 | 0.83 | 0.90 | 92.7 | 0.89 | 0.95 | 0.96 | 0.92 | 0.94 | 95.8 | 0.93 |
S5 | 0.94 | 0.96 | 0.87 | 0.91 | 94.3 | 0.91 | 0.95 | 0.96 | 0.90 | 0.92 | 95.2 | 0.92 |
S6 | 0.94 | 0.98 | 0.87 | 0.92 | 94.5 | 0.91 | 0.97 | 0.93 | 0.99 | 0.96 | 96.9 | 0.97 |
S7 | 0.96 | 0.98 | 0.84 | 0.90 | 96.2 | 0.93 | 0.93 | 0.98 | 0.76 | 0.85 | 93.5 | 0.89 |
S8 | 0.88 | 0.90 | 0.59 | 0.71 | 88.4 | 0.81 | 0.97 | 0.98 | 0.87 | 0.92 | 97.5 | 0.95 |
S9 | 0.94 | 0.98 | 0.84 | 0.91 | 94.9 | 0.92 | 0.96 | 0.98 | 0.87 | 0.92 | 94.2 | 0.95 |
Reference | Compared Vegetation Indices | The Proposed Index | The Selected Index |
---|---|---|---|
Gupta et al. [25] | SR, NDVI, NDWI, SAVI, CMRI | CMRI | CMRI |
Wang et al. [43] | SR, DVI, NDVI, EVI, MDI | MDI | MDI |
Diniz et al. [45] | NDVI, NDWI, CMRI, MMRI | MMRI | MMRI |
Ali and Nayyar [7] | RVI, EVI, NDVI, SAVI, CMRI, NDMI, L8MI | L8MI | L8MI |
Xia et al. [26] | RVI, EVI, NDVI, SAVI, MRI, SMRI | SMRI | SMRI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erfanifard, Y.; Lotfi Nasirabad, M.; Stereńczak, K. Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series. Remote Sens. 2022, 14, 4912. https://doi.org/10.3390/rs14194912
Erfanifard Y, Lotfi Nasirabad M, Stereńczak K. Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series. Remote Sensing. 2022; 14(19):4912. https://doi.org/10.3390/rs14194912
Chicago/Turabian StyleErfanifard, Yousef, Mohsen Lotfi Nasirabad, and Krzysztof Stereńczak. 2022. "Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series" Remote Sensing 14, no. 19: 4912. https://doi.org/10.3390/rs14194912
APA StyleErfanifard, Y., Lotfi Nasirabad, M., & Stereńczak, K. (2022). Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series. Remote Sensing, 14(19), 4912. https://doi.org/10.3390/rs14194912