High-Sensitivity MEMS Shear Probe for Autonomous Profiling Observation of Marine Turbulence
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Principle of Probe
2.2. Optimization of Structure Dimension
2.3. Micro-Manufacturing
2.4. Probe Packaging
3. Results
3.1. Sensitivity Calibration Experiment
3.2. Vector Test Experiment
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Pope, B. Turbulent Flow; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Zhang, X.; Han, G.; Li, D.; Wu, X.; Li, W.; Chu, P.C. Variational Estimation of Wave-Affected Parameters in a Two-Equation Turbulence Model. J. Atmos. Ocean. Technol. 2015, 32, 528–546. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, S.A. An Introduction to Ocean Turbulence; Cambridge University: Cambridge, UK, 2007. [Google Scholar]
- Rugg, A.; Foltz, G.R.; Perez, R.C. Role of Mixed Layer Dynamics in Tropical North Atlantic Interannual Sea Surface Temperature Variability. J. Clim. 2016, 29, 8083–8101. [Google Scholar] [CrossRef]
- Weng, Y.; Yang, H.; Song, D. Microstructure Measurement Form an Underwater Glider: Motion Analysis and Experimental Results. In Proceedings of the IEEE OCEANS, Genova, Italy, 18–21 May 2015. [Google Scholar]
- Savelyev, I.; Miller, W.D.; Sletten, M.; Smith, G.B.; Savidge, D.K.; Frick, G.; Menk, S.; Moore, T.; de Paolo, T.; Terrill, E.J.; et al. Airborne Remote Sensing of the Upper Ocean Turbulence during CASPER-East. Remote Sens. 2018, 10, 1224. [Google Scholar] [CrossRef] [Green Version]
- Paskin, L.; Conan, B.; Perignon, Y.; Aubrun, S. Evidence of OceanWaves Signature in the Space–Time Turbulent Spectra of the Lower Marine Atmosphere Measured by a Scanning LiDAR. Remote Sens. 2022, 14, 3007. [Google Scholar] [CrossRef]
- Shang, X.; Qi, Y.; Chen, G.; Liang, C.; Lueck, R.G.; Prairie, B.; Li, H. An Expendable Microstructure Profiler for Deep Ocean Measurements. J. Atmos. Ocean. Technol. 2017, 34, 153–165. [Google Scholar] [CrossRef]
- Thorpe, S.A. Small-scale processes in the upper ocean boundary layer. Nature 1985, 318, 519–522. [Google Scholar] [CrossRef]
- Lorke, A.; Peeters, F.; Wüest, A. Shear-induced convective mixing in bottom boundary layers on slopes. Limnol. Oceanogr. 2005, 50, 1612–1619. [Google Scholar] [CrossRef]
- Ledwell, J.R.; Montgomery, E.; Polzin, K.L.; Laurent, L.C.S.; Schmitt, R.W.; Toole, J. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 2000, 403, 179–182. [Google Scholar] [CrossRef]
- Acharya, M. Measurement of turbulent fluctuations in high-speed flows using hot wires and hot films. Rev. Sci. Instrum. 1979, 50, 952. [Google Scholar] [CrossRef] [Green Version]
- Oakey, N.S. EPSONDE: An instrument to measure turbulence in the deep ocean. IEEE J. Ocean. Eng. 1988, 13, 124–128. [Google Scholar] [CrossRef]
- Moum, J.N. Ocean Speed and Turbulence Measurements Using Pitot-Static Tubes on Moorings. J. Atmos. Ocean. Technol. 2015, 32, 1400–1413. [Google Scholar] [CrossRef] [Green Version]
- Prandke, H.; Pfeiffer, K. Shear probe for use in operational microstructure measuring systems. In Proceedings of the OCEANS’94, Brest, France, 13–16 September 1994; Volume 3, pp. 414–418. [Google Scholar] [CrossRef]
- Osborn, T. Applicability of turbulence measurement technology to small-scale plankton studies. Mar. Ecol. Prog. Ser. 2007, 347, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, T.; Wu, Z.; Liu, Y.; Wang, S. Structure Optimal Design and Performance Test of Airfoil Shear Probes. IEEE Sens. J. 2014, 15, 27–36. [Google Scholar] [CrossRef]
- Gao, W.; Ma, B.H.; Luo, J.; Deng, J. High sensitive Polyimide-based single-walled carbon nanotube thermal film sensor for fluid shear stress measurements. Smart Mater. Struct. 2019, 28, 075021. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, C.; Zhang, Z.; Yang, S.; Peng, J.; Wu, B.; Xue, X.; Zang, J.; Chen, X.; Yang, H.; et al. Vector High-Resolution Marine Turbulence Sensor Based on a MEMS Bionic Cilium-Shaped Structure. IEEE Sens. J. 2020, 21, 8741–8750. [Google Scholar] [CrossRef]
- Yang, S.; Miao, J.; Lv, T.; Zhang, W.; Zhang, G.; Xue, C.; Zhang, W.; Wang, R. High-sensitivity lollipop-shaped cilia sensor for ocean turbulence measurement. Sens. Actuators A Phys. 2021, 332, 113109. [Google Scholar] [CrossRef]
- Wang, R.; Shen, W.; Zhang, W.; Song, J.; Li, N.; Liu, M.; Zhang, G.; Xue, C.; Zhang, W. Design and implementation of a jellyfish otolith-inspired MEMS vector hydrophone for low-frequency detection. Microsyst. Nanoeng. 2021, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, Y.; Xu, W.; Bai, B.; Zhang, G.; Liu, J.; Xiong, W.; Zhang, C.; Xue, C.; Zhang, B. A ‘fitness-wheel-shaped’ MEMS vector hydrophone for 3D spatial acoustic orientation. J. Micromech. Microeng. 2017, 27, 045015. [Google Scholar] [CrossRef]
- Jian, Z.M.; Zhang, G.J.; Liu, M.R. Microstructure optimization design of MEMS bionic vector hydrophone. Micronanoelectron. Technol. 2014, 51, 576–582. [Google Scholar]
- Wang, R.; Liu, Y.; Bai, B.; Guo, N.; Guo, J.; Wang, X.; Liu, M.; Zhang, G.; Zhang, B.; Xue, C.; et al. Wide-frequency-bandwidth whisker-inspired MEMS vector hydrophone encapsulated with parylene. J. Phys. D Appl. Phys. 2016, 49, 07LT02. [Google Scholar] [CrossRef]
- Tian, C.; Wang, L. Study on Calibration Method for Shear Probe. Ocean Technol. 2011, 30, 58–60. [Google Scholar]
- Park, I.R.; Kim, J.I.; Seol, H.S.; Kim, K.S.; Ahn, J.W. Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section. J. Ocean Eng. Technol. 2018, 32, 244–252. [Google Scholar] [CrossRef]
Different Probe | Probe Sensitivity (V·m·s2/kg) |
---|---|
PNS [15] | 5.16 × 10−4 V·m·s2/kg |
Columnar cilium probe [19] | 2.68 × 10−2 V·m·s2/kg |
Lollipop-shaped sensor [20] | 2.73 × 10−2 V·m·s2/kg |
Bullet-headed probe | 4.84 × 10−2 V·m·s2/kg |
ρ (kg/m3) | v (m/s) | μ (pa · s) | d (m) |
---|---|---|---|
1000 | 0.081 | 0.001 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Qiao, Q.; Yang, S.; Kong, X.; Liu, G.; Chen, X.; Yang, H.; Song, D.; Jia, L.; Cui, J.; et al. High-Sensitivity MEMS Shear Probe for Autonomous Profiling Observation of Marine Turbulence. Remote Sens. 2022, 14, 5004. https://doi.org/10.3390/rs14195004
Wang R, Qiao Q, Yang S, Kong X, Liu G, Chen X, Yang H, Song D, Jia L, Cui J, et al. High-Sensitivity MEMS Shear Probe for Autonomous Profiling Observation of Marine Turbulence. Remote Sensing. 2022; 14(19):5004. https://doi.org/10.3390/rs14195004
Chicago/Turabian StyleWang, Renxin, Qingyu Qiao, Shasha Yang, Xiangzheng Kong, Guochang Liu, Xu Chen, Hua Yang, Dalei Song, Licheng Jia, Jiangong Cui, and et al. 2022. "High-Sensitivity MEMS Shear Probe for Autonomous Profiling Observation of Marine Turbulence" Remote Sensing 14, no. 19: 5004. https://doi.org/10.3390/rs14195004
APA StyleWang, R., Qiao, Q., Yang, S., Kong, X., Liu, G., Chen, X., Yang, H., Song, D., Jia, L., Cui, J., He, C., Yang, Y., Zhang, G., Xue, C., & Zhang, W. (2022). High-Sensitivity MEMS Shear Probe for Autonomous Profiling Observation of Marine Turbulence. Remote Sensing, 14(19), 5004. https://doi.org/10.3390/rs14195004