Identifying a Leading Predictor of Arctic Stratospheric Ozone for April Precipitation in Eastern North America
Abstract
:1. Introduction
2. Data, Simulations, and Methods
2.1. Data
2.2. Simulations
2.3. Leave-One-Out Validation
3. Results
3.1. Correlations between Observed ASO and PENA
3.2. The Potential Mechanisms Linking ASO and PENA
3.3. The WACCM Results
4. A Linear Regression Model for Predicting April PENA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- NOAA National Centers for Environmental Information (NCEI). State of the Climate: Monthly Drought Report for April 2010; NOAA/NCEI: Asheville, NC, USA, 2010.
- NOAA National Centers for Environmental Information (NCEI). State of the Climate: Monthly Drought Report for April 2011; NOAA/NCEI: Asheville, NC, USA, 2011.
- Stone, D.A.; Weaver, A.J.; Zwiers, F.W. Trends in Canadian precipitation intensity. Atmos. Ocean 2000, 38, 321–347. [Google Scholar] [CrossRef]
- Zhang, X.B.; Hogg, W.D.; Mekis, E. Spatial and temporal characteristics of heavy precipitation events over Canada. J. Clim. 2001, 14, 1923–1936. [Google Scholar] [CrossRef]
- Zhang, X.B.; Vincent, L.A.; Hogg, W.D.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmos. Ocean 2000, 38, 395–429. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Am. Meteorol. Soc. 2001, 82, 219–246. [Google Scholar] [CrossRef]
- Zhang, X.B.; Harvey, K.D.; Hogg, W.D.; Yuzyk, T.R. Trends in Canadian streamflow. Water Resour. Res. 2001, 37, 987–998. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Andsager, K.; Liang, X.Z.; Arritt, R.W.; Takle, E.S.; Gutowski, W.J.; Pan, Z.T. Observations and regional climate model simulations of heavy precipitation events and seasonal anomalies: A comparison. J. Hydrometeorol. 2002, 3, 322–334. [Google Scholar] [CrossRef]
- Small, D.; Islam, S.; Vogel, R.M. Trends in precipitation and streamflow in the eastern US: Paradox or perception? Geophys. Res. Lett. 2006, 33, 395–409. [Google Scholar] [CrossRef]
- Vincent, L.A.; Mekis, E. Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos. Ocean 2006, s44, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Mekis, E.; Vincent, L.A. An Overview of the Second Generation Adjusted Daily Precipitation Dataset for Trend Analysis in Canada. Atmos. Ocean 2011, 49, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.L.; Bradley, R.S. Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States. J. Clim. 2007, 20, 5401–5417. [Google Scholar] [CrossRef]
- Brown, P.J.; Bradley, R.S.; Keimig, F.T. Changes in Extreme Climate Indices for the Northeastern United States, 1870–2005. J. Clim. 2010, 23, 6555–6572. [Google Scholar] [CrossRef]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Chapter 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; Global Change Research Program: Washington, DC, USA, 2014; pp. 19–67. [Google Scholar]
- Agel, L.; Barlow, M.; Qian, J.H.; Colby, F.; Douglas, E.; Eichler, T. Climatology of Daily Precipitation and Extreme Precipitation Events in the Northeast United States. J. Hydrometeorol. 2015, 16, 2537–2557. [Google Scholar] [CrossRef]
- Frei, A.; Kunkel, K.E.; Matonse, A. The Seasonal Nature of Extreme Hydrological Events in the Northeastern United States. J. Hydrometeorol. 2015, 16, 2065–2085. [Google Scholar] [CrossRef]
- Huang, H.P.; Winter, J.M.; Osterberg, E.C.; Horton, R.M.; Beckage, B. Total and Extreme Precipitation Changes over the Northeastern United. J. Hydrometeorol. 2017, 18, 1783–1798. [Google Scholar] [CrossRef] [PubMed]
- Montroy, D.L. Linear relation of central and eastern North American precipitation to tropical Pacific Sea surface temperature anomalies. J. Clim. 1997, 10, 541–558. [Google Scholar] [CrossRef]
- Hartley, S.; Keables, M.J. Synoptic associations of winter climate and snowfall variability in New England, USA, 1950–1992. Int. J. Climatol. 1998, 18, 281–298. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Angel, J.R. Relationship of ENSO to snowfall and related cyclone activity in the contiguous United States. J. Geophys. Res. Atmos. 1999, 104, 19425–19434. [Google Scholar] [CrossRef]
- Bradbury, J.A.; Keim, B.D.; Wak, C.P. The Influence of Regional Storm Tracking and Teleconnections on Winter Precipitation in the Northeastern United States. Ann. Assoc. Am. Geog. 2003, 93, 544–556. [Google Scholar] [CrossRef]
- Shabbar, A. The impact of El Niño-Southern Oscillation on the Canadian climate. Adv. Geophys. 2006, 6, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Archambault, H.M.; Bosart, L.F.; Keyser, D.; Aiyyer, A.R. Influence of large-scale flow regimes on cool-season precipitation in the northeastern United States. Water Resour. Res. 2008, 136, 2945–2963. [Google Scholar] [CrossRef]
- Durkee, J.D.; Frye, J.D.; Fuhrmanny, C.M.; Lacke, M.C.; Jeong, H.G.; Mote, T.L. Effects of the North Atlantic Oscillation on precipitation-type frequency and distribution in the eastern United States. Theor. Appl. Climatol. 2008, 94, 51–65. [Google Scholar] [CrossRef]
- Gutzman, W.L. An Investigation of Broadscale Vertical Motions and Precipitation in AN Eastern North American Storm. Water Resour. Res. 2009, 90, 419. [Google Scholar] [CrossRef]
- Ning, L.; Bradley, R.S. Winter precipitation variability and corresponding teleconnections over the northeastern United States. J. Geophys. Res. Atmos. 2014, 119, 7931–7945. [Google Scholar] [CrossRef] [Green Version]
- Thiombiano, A.N.; St-Hilaire, A.; El Adlouni, S.E.; Ouarda, T.B.M.J. Nonlinear response of precipitation to climate indices using a non-stationary Poisson-generalized Pareto model: Case study of southeastern Canada. Int. J. Climatol. 2018, 38, E875–E888. [Google Scholar] [CrossRef]
- Thiombiano, A.N.; El Adlouni, S.; St-Hilaire, A.; Ouarda, T.B.M.J.; El-Jabi, N. Nonstationary frequency analysis of extreme daily precipitation amounts in Southeastern Canada using a peaks-over-threshold approach. Theor. Appl. Climatol. 2017, 129, 413–426. [Google Scholar] [CrossRef]
- Whan, K.; Zwiers, F. The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models. Clim. Dyn. 2017, 48, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.Z.; Gan, T.Y.; Chen, Y.D. Synoptic moisture pathways associated with mean and extreme precipitation over Canada for winter and spring. Clim. Dyn. 2019, 53, 2663–2681. [Google Scholar] [CrossRef]
- Trenberth, K.E. The definition of El Nino. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef]
- Hirsch, M.E.; DeGaetano, A.T.; Colucci, S.J. An East Coast winter storm climatology. J. Clim. 2001, 14, 882–899. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Water Resour. Res. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Leathers, D.J.; Yarnal, B.; Palecki, M.A. The Pacific North-American Teleconnection Pattern and United-States Climate. Part I: Regional Temperature and Precipitation Associations. J. Clim. 1991, 4, 517–528. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Water Resour. Res. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Ramankutty, N. An Oscillation in the Global Climate System of Period 65-70 Years. Nature 1994, 367, 723–726. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Calvo, N.; Polvani, L.M.; Solomon, S. On the surface impact of Arctic stratospheric ozone extremes. Environ. Res. Lett. 2015, 10, 094003. [Google Scholar] [CrossRef] [Green Version]
- Ivy, D.J.; Solomon, S.; Calvo, N.; Thompson, D.W.J. Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate. Environ. Res. Lett. 2017, 12, 024004. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Tung, K.K. Possible ozone-induced long-term changes in planetary wave activity in late winter. J. Clim. 2003, 16, 3027–3038. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Tung, K.K.; Liu, J.P. A closer comparison of early and late-winter atmospheric trends in the northern hemisphere. J. Clim. 2005, 18, 3204–3216. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.L.; Polvani, L.M. The surface impacts of Arctic stratospheric ozone anomalies. Environ. Res. Lett. 2014, 9, 074015. [Google Scholar] [CrossRef] [Green Version]
- Karpechko, A.Y.; Perlwitz, J.; Manzini, E. A model study of tropospheric impacts of the Arctic ozone depletion 2011. J. Geophys. Res. Atmos. 2014, 119, 7999–8014. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.P.; Tian, W.S.; Fu, Q.; Jin, F.F.; Hu, Y.Y.; Zhang, J.K.; Wang, W.K.; Sun, C.; Feng, J.; et al. A connection from Arctic stratospheric ozone to El Niño-southern oscillation. Environ. Res. Lett. 2016, 11, 124026. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Guan, Z.; Tian, W. Signatures of the Arctic stratospheric ozone in northern Hadley circulation extent and subtropical precipitation. Geophys. Res. Lett. 2019, 46, 12340–12349. [Google Scholar] [CrossRef]
- Ma, X.; Xie, F.; Li, J.P.; Tian, W.S.; Ding, R.Q.; Sun, C.; Zhang, J.K. Effects of Arctic stratospheric ozone changes on spring precipitation in the northwestern United States. Atmos. Chem. Phys. 2019, 19, 861–875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Wang, T.; Xu, M.; Zhang, J. Influence of wintertime polar vortex variation on the climate over the north pacific during late winter and spring. Atmosphere 2019, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Domeisen, D.I.V. Estimating the frequency of sudden stratospheric warming events from surface observations of the North Atlantic Oscillation. J. Geophys. Res. Atmos. 2019, 124, 3180–3194. [Google Scholar] [CrossRef]
- Dunn-Sigouin, E.; Shaw, T.A. Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos. 2015, 120, 1374–1390. [Google Scholar] [CrossRef] [Green Version]
- Kidston, J.; Scaife, A.A.; Hardiman, S.C.; Mitchell, D.M.; Butchart, N.; Baldwin, M.P.; Gray, L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015, 8, 433–440. [Google Scholar] [CrossRef]
- King, A.D.; Butler, A.H.; Jucker, M.; Earl, N.O.; Rudeva, I. Observed relationships between sudden stratospheric warmings and European climate extremes. J. Geophys. Res. Atmos. 2019, 124, 13943–13961. [Google Scholar] [CrossRef]
- Orsolini, Y.J.; Nishii, K.; Nakamura, H. Duration and decay of Arctic stratospheric vortex events in the ECMWF seasonal forecast model. Q. J. Roy. Meteor. Soc. 2018, 144, 2876–2888. [Google Scholar] [CrossRef]
- Tripathi, O.P.; Charlton-Perez, A.; Sigmond, M.; Vitart, F. Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett. 2015, 10, 104007. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, H.; Xu, M.; Yin, Q.; Zhao, S.; Tian, W.; Yang, Z. Impacts of stratospheric polar vortex changes on wintertime precipitation over the northern hemisphere. Clim. Dyn. 2022, 58, 3155–3171. [Google Scholar] [CrossRef]
- Cheung, J.C.H.; Haigh, J.D.; Jackson, D.R. Impact of EOS MLS ozone data on medium-extended range ensemble weather forecasts. J. Geophys. Res. Atmos. 2014, 119, 9253–9266. [Google Scholar] [CrossRef]
- Stone, K.A.; Solomon, S.; Kinnison, D.E.; Baggett, C.F.; Barnes, E.A. Prediction of Northern Hemisphere Regional Surface Temperatures Using Stratospheric Ozone Information. J. Geophys. Res. Atmos. 2019, 124, 5922–5933. [Google Scholar] [CrossRef]
- Xie, F.; Ma, X.; Li, J.P.; Tian, W.S.; Ruan, C.Q.; Sun, C. Using Observed Signals from the Arctic Stratosphere and Indian Ocean to Predict April-May Precipitation in Central China. J. Clim. 2020, 33, 131–143. [Google Scholar] [CrossRef]
- Davis, S.M.; Rosenlof, K.H.; Hassler, B.; Hurst, D.F.; Read, W.G.; Vömel, H.; Selkirk, H.; Fujiwara, M.; Damadeo, R. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long-term database for climate studies. Earth Syst. Sci. Data 2016, 8, 461–490. [Google Scholar] [CrossRef] [Green Version]
- Froidevaux, L.; Anderson, J.; Wang, H.J.; Fuller, R.A.; Schwartz, M.J.; Santee, M.L.; Livesey, N.J.; Pumphrey, H.C.; Bernath, P.F.; Russell III, J.M.; et al. Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): Methodology and sample results with a focus on HCl, H2O, and O-3. Atmos. Chem. Phys. 2015, 15, 10471–10507. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, J.P.; Zhang, J.K.; Tian, W.S.; Hu, Y.Y.; Zhao, S.; Sun, C.; Ding, R.Q.; Feng, J.; Yang, Y. Variations in North Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ. Res. Lett. 2017, 12, 114023. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Schneider, U.; Finger, P.; Meyer-Christoffer, A.; Rustemeier, E.; Ziese, M.; Becker, A. Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 2017, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Thépaut, J. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D.R.; Mills, M.J.; Kinnison, D.E.; Lamarque, J.F.; Calvo, N.; Polvani, L.M. Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.R.; Marsh, D.R.; Kinnison, D.E.; Boville, B.A.; Sassi, F. Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. Atmos. 2007, 112, D09301. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). Scientific Assessment of Ozone depletion: 2002. In Global Ozone Research and Monitoring Project, Report No. 47; World Meteorological Organization: Geneva, NY, USA, 2003; p. 498. [Google Scholar]
- Luo, S.Z.; Wang, C.; Xi, X.H.; Pan, F.F. Estimating FPAR of maize canopy using airborne discrete-return LiDAR data. Opt. Express 2014, 22, 5106–5117. [Google Scholar] [CrossRef] [Green Version]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics; SIAM: Philadelphia, PA, USA, 1982. [Google Scholar]
- Guo, Y.; Li, J.P.; Li, Y. A Time-Scale Decomposition Approach to Statistically Downscale Summer Rainfall over North China. J. Clim. 2012, 25, 572–591. [Google Scholar] [CrossRef]
- Zorita, E.; von Storch, H. The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Clim. 1999, 12, 2474–2489. [Google Scholar] [CrossRef]
- Xie, F.; Ma, X.; Li, J.P.; Huang, J.L.; Tian, W.S.; Zhang, J.K.; Hu, Y.Y.; Sun, C.; Zhou, X.; Feng, J.; et al. An advanced impact of Arctic stratospheric ozone changes on spring precipitation in China. Clim. Dyn. 2018, 51, 4029–4041. [Google Scholar] [CrossRef]
- Ma, X.; Xie, F. Predicting April Precipitation in the Northwestern United States Based on Arctic Stratospheric Ozone and Local Circulation. Front. Earth Sci. 2020, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, V.; Schwarzkopf, M.D.; Randel, W.J. Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature 1996, 382, 616–618. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Xia, Y.; Fu, Q. Tropospheric temperature response to stratospheric ozone recovery in the 21st century. Atmos. Chem. Phys. 2011, 11, 7687–7699. [Google Scholar] [CrossRef]
- Wang, T.; Tian, W.; Zhang, J.; Xu, M.; Lian, T.; Hu, D.; Qie, K. Surface ocean current variations in the north pacific related to arctic stratospheric ozone. Clim. Dyn. 2022, 59, 3087–3111. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Stevens, S.E.; Stevens, L.E.; Karl, T.R. Observed climatological relationships of extreme daily precipitation events with precipitable water and vertical velocity in the contiguous United States. Geophys. Res. Lett. 2020, 47, e2019GL086721. [Google Scholar] [CrossRef]
- Wang, W.; Seaman, N.L. A Comparison Study of Convective Parameterization Schemes in a Mesoscale Model. Water Resour. Res. 1997, 125, 252–278. [Google Scholar] [CrossRef]
- Wang, Y.C.; Pan, H.L.; Hsu, H.H. Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res. Atmos. 2015, 120, 10681–10702. [Google Scholar] [CrossRef]
- Gao, Y.; Leung, L.R.; Zhao, C.; Hagos, S. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos. 2017, 122, 2714–2733. [Google Scholar] [CrossRef]
- Kim, M.K.; Kang, I.S.; Park, C.K.; Kim, K.M. Super ensemble prediction of regional precipitation over Korea. Int. J. Climatol. 2004, 24, 777–790. [Google Scholar] [CrossRef]
Positive Anomaly Events | Negative Anomaly Events | |
---|---|---|
March ASO | 1994, 1999, 2004, 2010 | 1993, 1995, 1996, 2000, 2005, 2007, 2011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Xie, F.; Chen, X.; Wang, L.; Yang, G. Identifying a Leading Predictor of Arctic Stratospheric Ozone for April Precipitation in Eastern North America. Remote Sens. 2022, 14, 5040. https://doi.org/10.3390/rs14195040
Ma X, Xie F, Chen X, Wang L, Yang G. Identifying a Leading Predictor of Arctic Stratospheric Ozone for April Precipitation in Eastern North America. Remote Sensing. 2022; 14(19):5040. https://doi.org/10.3390/rs14195040
Chicago/Turabian StyleMa, Xuan, Fei Xie, Xiaosong Chen, Lei Wang, and Guanyu Yang. 2022. "Identifying a Leading Predictor of Arctic Stratospheric Ozone for April Precipitation in Eastern North America" Remote Sensing 14, no. 19: 5040. https://doi.org/10.3390/rs14195040
APA StyleMa, X., Xie, F., Chen, X., Wang, L., & Yang, G. (2022). Identifying a Leading Predictor of Arctic Stratospheric Ozone for April Precipitation in Eastern North America. Remote Sensing, 14(19), 5040. https://doi.org/10.3390/rs14195040