A Nonlinear Data-Driven Towed Array Shape Estimation Method Using Passive Underwater Acoustic Data
Abstract
:1. Introduction
2. Passive Underwater Acoustic Signal Model in the Distorted Towed Array
3. Distorted Towed Hydrophone Array Shape Estimation Method
3.1. Time-Delay Model in the Narrow-Band Components
3.2. Proposed Outlier-Robust Particle Filter Method
3.2.1. Posterior Probability Distribution Inference
3.2.2. Summary of the Proposed ORPF Method
4. Simulations and Experiments
4.1. Simulations
4.2. Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinich, M.J.; Rule, W. Bearing estimation using a large towed array. J. Acoust. Soc. Am. 1975, 58, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Lemon, G.S. Towed-array history. IEEE J. Ocean. Eng. 2004, 29, 365–373. [Google Scholar] [CrossRef]
- Schurman, I. Reverberation rejection with a dual-line towed array. IEEE J. Ocean. Eng. 1996, 21, 193–204. [Google Scholar] [CrossRef]
- Felisberto, P.; Jesus, S.M. Towed-array beamforming during ship’s maneuvering. Proc. Inst. Elect. Eng. Radar Sonar Navig. 1996, 143, 210–215. [Google Scholar] [CrossRef]
- Hodgkiss, W. The effects of array shape perturbation on beamforming and passive ranging. IEEE J. Ocean. Eng. 1983, 8, 120–130. [Google Scholar] [CrossRef]
- Zhu, C.; Seri, S.G.; Mohebbi-Kalkhoran, H.; Ratilal, P. Long-range automatic detection, acoustic signature characterization and bearing-time estimation of multiple ships with coherent hydrophone array. Remote Sens. 2020, 12, 3731. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, T.; Gerstoft, P.; Pan, X. Joint towed array shape and direction of arrivals estimation using sparse Bayesian learning during maneuvering. J. Acoust. Soc. Am. 2020, 147, 1738–1751. [Google Scholar] [CrossRef]
- Che, Z.; Wang, J.; Zhu, J.; Zhang, B.; Zhang, Y.; Wu, Y. Real-time array shape estimation method of horizontal suspended linear array based on non-acoustic auxiliary sensors. IEEE Access 2021, 9, 90500–90509. [Google Scholar] [CrossRef]
- Ballegooijen, E.; Mierlo, G.; Schooneveld, C.; van der Zalm, P.P.M.; Parsons, A.T.; Field, N.H. Measurement of towed array position, shape, and attitude. IEEE J. Ocean. Eng. 1989, 14, 375–383. [Google Scholar] [CrossRef]
- Lu, F.; Milios, E.; Stergiopoulos, S.; Dhanantwari, A. New towed-array shape-estimation scheme for real-time sonar systems. IEEE J. Ocean. Eng. 2003, 28, 552–563. [Google Scholar] [CrossRef]
- Li, C.; Jiang, J.; Duan, F.; Wang, X.; Ma, L.; Bu, L.; Sun, Z. Towed array shape estimation based on single or double near-field calibrating sources. Circuits Syst. Signal Process. 2019, 38, 153–172. [Google Scholar] [CrossRef]
- Cario, G.; Casavola, A.; Gagliardi, G.; Lupia, M.; Severino, U.; Bruno, F. Analysis of error sources in underwater localization systems. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; pp. 1–6. [Google Scholar]
- Gray, D.A.; Anderson, B.D.O.; Bitmead, R.R. Towed array shape estimation using Kalman filters-theoretical models. IEEE J. Ocean. Eng. 1993, 18, 543–556. [Google Scholar] [CrossRef]
- Shulin, W.; Shuqiu, L.; Chengpeng, H. Approximately optimal distribution of depth sensors over towed array. IET Signal Process. 2018, 12, 770–776. [Google Scholar] [CrossRef]
- Quinn, B.G.; Barrett, R.F.; Kootsookos, P.J.; Searle, S.J. The estimation of the shape of an array using a hidden Markov model. I IEEE J. Ocean. Eng. 1993, 18, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Rockah, Y.; Schultheiss, P.M. Array shape calibration using sources in unknown locations–Part I: Far-field sources. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 286–299. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.A.; Wolf, W.O.; Riley, J.L. An eigenvector method for estimating the positions of the elements of an array of receivers. In Proceedings of the Conference Signal Processing Application, Adelaide, Australia, 17–19 April 1989; pp. 391–393. [Google Scholar]
- Weiss, A.J.; Friedlander, B. Array shape calibration using sources in unknown locations–A maximum likelihood approach. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 1958–1966. [Google Scholar] [CrossRef]
- Smith, J.J.; Leung, Y.H.; Cantoni, A. Sptatistics of the phase delays between array receivers estimated from the eigendecomposition of the signal correlation matrix. In Proceedings of the ICASSP’94. IEEE International Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, 19–22 April 1994; Volume 2, pp. 325–329. [Google Scholar]
- Park, H.Y.; Lee, C.; Kang, H.G.; Youn, D.H. Generalization of the subspace-based array shape estimations. IEEE J. Ocean. Eng. 2004, 29, 847–856. [Google Scholar] [CrossRef]
- Bouvet, M. Beamforming of a distorted line array in the presence of uncertainties on the sensor positions. J. Acoust. Soc. Am. 1987, 81, 1833–1840. [Google Scholar] [CrossRef]
- Owsley, N.L.; Swope, G.R. Array shape determination using time delay estimation procedures. IEEE EASCON 1980, 13, 158–164. [Google Scholar]
- Hassan, A.; Al-Hussainy, E.; Bakry, M. Nonparametric detectors for signal detection and time delay estimation. In Proceedings of the International Conference on Acoustics Speech, and Signal Processing, Paris, France, 3–5 May 1982; Volume 7, pp. 387–390. [Google Scholar]
- Wales, S.C.; Heitmeyer, R.M. An ensemble source spectra model for merchant ship-radiated noise. J. Acoust. Soc. Am. 2002, 111, 1211–1231. [Google Scholar] [CrossRef]
- Odom, J.L.; Krolik, J.L. Passive towed array shape estimation using heading and acoustic data. IEEE J. Ocean. Eng. 2015, 40, 465–474. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, P.; Li, T.; Fang, S. Feature enhancement technique with distorted towed array in the underwater radiated noise. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Hongkong, China, 27–30 August 2017; Volume 255, pp. 3824–3830. [Google Scholar]
- Wu, Q.; Zhang, H.; Lai, Z.; Xu, Y.; Yao, S.; Tao, J. An enhanced Data-Driven Array Shape Estimation Method Using Passive Underwater Acoustic Data. Remote Sens. 2021, 13, 1773. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, S.; Wu, Q.; An, L.; Luo, X.; Cao, H. A Time-frequency joint time-delay difference estimation method for signal enhancement in the distorted towed hydrophone array. Remote Sens. 2021, 13, 4586. [Google Scholar] [CrossRef]
- Ross, D.; Kuperman, W.A. Mechanics of underwater noise. J. Acoust. Soc. Amer. 1989, 86, 1626. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; McGraw-Hill Book Company: New York, NY, USA, 1983. [Google Scholar]
- Abraham, D.A. Underwater Acoustic Signal Processing: Modeling, Detection, and Estimation; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Agamennoni, G.; Nieto, J.I.; Nebot, E.M. An outlier-robust Kalman filter. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1551–1558. [Google Scholar]
- Ting, J.A.; Theodorou, E.; Schaal, S. Learning an outlier-robust Kalman filter. In Proceedings European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2007; pp. 748–756. [Google Scholar]
- Ting, J.A.; Theodorou, E.; Schaal, S. A Kalman filter for robust outlier detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1514–1519. [Google Scholar]
- Maskell, S.; Gordon, N. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 1–15. [Google Scholar]
- Dempster, A.; Laird, N.; Rubin, D. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–38. [Google Scholar]
- Shinozaki, T.; Ostendorf, M. Cross-validation EM training for robust parameter estimation. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 2007, 4, 437–440. [Google Scholar]
Given the observed array data . |
(1) Calculate based on the hypothetical uniform linear array. |
(2) Acquire the detected narrow-band frequencies with based on . |
(3) Stacking observed measurement vector consisting of the complex values of each narrow-band component. |
(4) Estimate the time-delay differences using proposed outlier-robust particle filter algorithm: |
a. Initialize initial parameter set . |
b. Initialize covariance for observation noise , variance of state noise . |
c. Estimate state vector and . |
d. Estimate parameter set . |
(5) Perform array shape estimates . |
(6) Perform the beamforming and acquire the improved output signal. |
Frequency/Hz | 32 | 62 | 96 | 190 | 310 |
---|---|---|---|---|---|
Gain loss in the average method/dB | −20.3 | −15.0 | −13.2 | −14.6 | −27.9 |
Gain loss in the subspace-based method/dB | −20.9 | −15.7 | −13.7 | −14.8 | –27.8 |
Gain loss in the ORKF method/dB | −1.0 | −1.7 | −1.7 | −1.8 | −1.8 |
Gain loss in the proposed method/dB | −0.2 | −0.2 | −0.2 | −0.3 | −0.4 |
Frequency/Hz | 83 | 104 | 109 |
---|---|---|---|
Gains in the average method/dB | 5.3 | 5.0 | 4.8 |
Gains in the subspace-based method/dB | 6.5 | 5.7 | 5.2 |
Gains in the ORKF method/dB | 10.0 | 10.7 | 15.7 |
Gains in the proposed method/dB | 16.1 | 17.2 | 25.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Xu, Y. A Nonlinear Data-Driven Towed Array Shape Estimation Method Using Passive Underwater Acoustic Data. Remote Sens. 2022, 14, 304. https://doi.org/10.3390/rs14020304
Wu Q, Xu Y. A Nonlinear Data-Driven Towed Array Shape Estimation Method Using Passive Underwater Acoustic Data. Remote Sensing. 2022; 14(2):304. https://doi.org/10.3390/rs14020304
Chicago/Turabian StyleWu, Qisong, and Youhai Xu. 2022. "A Nonlinear Data-Driven Towed Array Shape Estimation Method Using Passive Underwater Acoustic Data" Remote Sensing 14, no. 2: 304. https://doi.org/10.3390/rs14020304
APA StyleWu, Q., & Xu, Y. (2022). A Nonlinear Data-Driven Towed Array Shape Estimation Method Using Passive Underwater Acoustic Data. Remote Sensing, 14(2), 304. https://doi.org/10.3390/rs14020304