InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust
Abstract
:1. Introduction
2. InSAR Data and Processing Methods
3. Post-Seismic Deformation Observation Results
3.1. ALOS-2 Post-Seismic Deformation
3.2. Sentinel-1 Post-Seismic Deformation
4. Post-Seismic Deformation Modelling
4.1. Kinematic Afterslip Model
4.2. Stress-Driven Afterslip
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bilham, R.; Larson, K.; Freymueller, J. Gps measurements of present-day convergence across the nepal himalaya. Nature 1997, 336, 61–64. [Google Scholar] [CrossRef]
- Dal Zilio, L.; Ruh, J.; Avouac, J.P. Structural evolution of orogenic wedges: Interplay between erosion and weak décollements. Tectonics 2020, 39, e2020TC006210. [Google Scholar] [CrossRef]
- Feng, W.; Lindsey, E.; Barbot, S.; Samsonov, S.; Xu, X. Source characteristics of the 2015 MW 7.8 Gorkha (Nepal) earthquake and its MW 7.2 aftershock from space geodesy. Tectonophysics 2016, 712, 747–758. [Google Scholar] [CrossRef]
- Wang, K.; Fialko, Y. Observations and modeling of coseismic and postseismic deformation due to the 2015 M w 7.8 Gorkha (Nepal) earthquake. J. Geophys. Res. Solid Earth 2018, 123, 761–779. [Google Scholar] [CrossRef]
- Elliott, J.R.; Jolivet, R.; González, P.J.; Avouac, J.-P.; Hollingsworth, J.; Searle, M.P.; Stevens, V.L. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 2016, 9, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Grandin, R.; Doin, M.P.; Bollinger, L.; Pinel-Puysségur, B.; Ducret, G.; Jolivet, R.; Sapkota, S.N. Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology 2012, 40, 1059–1062. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, E.O.; Natsuaki, R.; Xu, X.; Shimada, M.; Sandwell, D.T. Line of sight displacement from alosinterferometry: Mw 7.8 gorkha earthquake and mw 7.3 aftershock. Geophys. Res. Lett. 2015, 42, 6655–6661. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, Y.; Wen, Y.; Liu, Y.; Xu, C.; Xu, C. Afterslip evolution on the crustal ramp of the Main Himalayan Thrust fault following the 2015 Mw 7.8 Gorkha (Nepal) earthquake. Tectonophysics 2019, 758, 29–43. [Google Scholar] [CrossRef]
- Tian, Z.; Freymueller, J.T.; Yang, Z. Spatio-temporal variations of afterslip and viscoelastic relaxation following the Mw 7.8 Gorkha (Nepal) earthquake. Earth Planet. Sci. Lett. 2020, 532, 116031. [Google Scholar] [CrossRef]
- Zhao, B.; Bürgmann, R.; Wang, D.; Tan, K.; Du, R.; Zhang, R.; Bin, Z.; Roland, B.; Dongzhen, W.; Kai, T.; et al. Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7.9 Gorkha, Nepal, earthquake. J. Geophys. Res. Solid Earth 2017, 122, 8376–8401. [Google Scholar] [CrossRef] [Green Version]
- Jouanne, F.; Gajurel, A.; Mugnier, J.L.; Bollinger, L.; Adhikari, L.B.; Koirala, B.; Cotte, N.; Bhattarai, R.; Pecher, A.; Bascou, P.; et al. Postseismic deformation following the April 25, 2015 Gorkha earthquake (Nepal): Afterslip versus viscous relaxation. J. Asian Earth Sci. 2019, 176, 105–119. [Google Scholar] [CrossRef]
- Diao, F.; Wang, R.; Xiong, X.; Liu, C. Overlapped postseismic deformation caused by afterslip and viscoelastic relaxation following the 2015 mw 7.8 Gorkha (nepal) earthquake. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020378. [Google Scholar] [CrossRef]
- Hong, S.; Liu, M. Postseismic deformation and afterslip evolution of the 2015 Gorkha earthquake constrained by InSAR and GPS observations. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020230. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Wang, D.; Yu, J.; Tan, K. Dynamic modeling of postseismic deformation following the 2015 Mw 7.8 Gorkha earthquake, Nepal. J. Asian Earth Sci. 2021, 215, 104781. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and interferometric processing software. Eur. Space Agency (Spec. Publ.) ESA SP 2000, 461, 211–219. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fielding, E.J.; Cross, P.; Muller, J.P. Interferometric synthetic aperture radar atmospheric correction: GPS topography-dependent turbulence model. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Agram, P.S.; Jolivet, R.; Riel, B.; Lin, Y.N.; Simons, M.; Hetland, E.; Doin, M.P.; Lasserre, C. New radar interferometric time series analysis toolbox released. Eos Trans. Am. Geophys. Union 2013, 94, 69–70. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112, B07407. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, R.; Lasserre, C.; Doin, M.P.; Guillaso, S.; Peltzer, G.; Dailu, R.; Sun, J.; Shen, Z.K.; Xu, X. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Ryder, I.; Bürgmann, R. Spatial variations in slip deficit on the central San Andreas Fault from InSAR. Geophys. J. Int. 2008, 175, 837–852. [Google Scholar] [CrossRef] [Green Version]
- Sreejith, K.M.; Sunil, P.S.; Agrawal, R.; Saji, A.P.; Ramesh, D.S.; Rajawat, A.S. Coseismic and early postseismic deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophys. Res. Lett. 2016, 43, 3160–3168. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.H.; Bürgmann, R.; Freed, A.M. Probing the lithospheric rheology across the eastern margin of the tibetan plateau. Earth Planet. Sci. Lett. 2014, 396, 88–96. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W. Logarithmic model joint inversion method for coseismic and postseismic slip: Application to the 2017 mw 7.3 sarpol zahāb earthquake, iran. J. Geophys. Res. Solid Earth 2019, 124, 12034–12052. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Qu, C.; Bürgmann, R.; Gong, W.; Shan, X. Relaxation of Tibetan Lower Crust and Afterslip Driven by the 2001 Mw7. 8 Kokoxili, China, Earthquake Constrained by a Decade of Geodetic Measurements. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021314. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Zhang, Z.; Rollins, C.; Gualandi, A.; Avouac, J.P.; Shi, H.; Wang, P.; Chen, W.; Zhang, R.; Zhang, P.; et al. Postseismic deformation following the 2015 Mw7. 8 Gorkha (Nepal) earthquake: New GPS data, kinematic and dynamic models, and the roles of afterslip and viscoelastic relaxation. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019852. [Google Scholar] [CrossRef]
- Himematsu, Y.; Furuya, M. Coseismic and Postseismic Crustal Deformation Associated With the 2016 Kumamoto Earthquake Sequence Revealed by PALSAR-2 Pixel Tracking and InSAR. Earth Space Sci. 2020, 7, e2020EA001200. [Google Scholar] [CrossRef]
- Pousse-Beltran, L.; Socquet, A.; Benedetti, L.; Doin, M.P.; Rizza, M.; d’Agostino, N. Localized afterslip at geometrical complexities revealed by InSAR After the 2016 Central Italy seismic sequence. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019065. [Google Scholar] [CrossRef]
- Zhao, L.; Qu, C.; Shan, X.; Zhao, D.; Gong, W.; Li, Y. Coseismic deformation and multi-fault slip model of the 2019 Mindanao earthquake sequence derived from Sentinel-1 and ALOS-2 data. Tectonophysics 2021, 799, 228707. [Google Scholar] [CrossRef]
- Hsu, Y.J.; Simons, M.; Avouac, J.P.; Galetzka, J.; Sieh, K.; Chlieh, M.; Natawidjaja, D.; Prawirodirdjo, L.; Bock, Y. Frictional afterslip following the Mw 8.7, 2005 Nias-Simeulue earthquake, Sumatra. Science 2006, 312, 1921–1926. [Google Scholar] [CrossRef]
- Wang, R.; Parolai, S.; Ge, M.; Jin, M.; Walter, T.; Zschau, J. The 2011 Mw 9.0 Tohoku earthquake: Comparison of GPS and strong-motion data. Bull. Seismol. Soc. Am. 2013, 103, 1336–1347. [Google Scholar] [CrossRef]
- Qu, C.; Qiao, X.; Shan, X.; Zhao, D.; Li, Y. InSAR 3-d coseismic displacement field of the 2015 mw 7.8 nepal earthquake: Insights into complex fault kinematics during the event. Remote Sens. 2020, 12, 3982. [Google Scholar] [CrossRef]
- Wang, K.; Fialko, Y. Space geodetic observations and models of postseismic deformation due to the 2005m7.6 kashmir (pakistan) earthquake. J. Geophys. Res. Solid Earth 2015, 119, 7306–7318. [Google Scholar] [CrossRef]
- Barbot, S.; Fialko, Y. A unified continuum representation of post-seismic relaxation mechanisms: Semi-analyticmodels of afterslip, poroelastic rebound and viscoelastic flow. Geophys. J. Int. 2010, 182, 1124–1140. [Google Scholar] [CrossRef] [Green Version]
- Heki, K.; Tamura, Y. Short term afterslip in the 1994 Sanriku-Haruka-Oki earthquake. Geophys. Res. Lett. 1997, 24, 3285–3288. [Google Scholar] [CrossRef]
- Cheloni, D.; Giuliani, R.; D’Anastasio, E.; Atzori, S.; Walters, R.; Bonci, L.; D'Agostino, N.; Mattone, M.; Calcaterra, S.; Gambino, P.; et al. Coseismic and post-seismic slip of the 2009 L’Aquila(central Italy) MW 6.3 earthquake and implications for seismic potential along the Campotosto fault from joint inversion of high-precision levelling, InSAR and GPS data. Tectonophysics 2014, 622, 168–185. [Google Scholar] [CrossRef]
- Ragon, T.; Sladen, A.; Bletery, Q.; Vergnolle, M.; Cavalié, O.; Avallone, A. Joint inversion of co-seismic and early post-seismic slip to optimize the information content in geodetic data: Application to the 2009 M w6. 3 L’Aquila earthquake, Central Italy. J. Geophys. Res. Solid Earth 2019, 124, 10522–10543. [Google Scholar] [CrossRef] [Green Version]
- Yano, T.E.; Shao, G.F.; Liu, Q.M.; Ji, C.; Archuleta, R.J. Coseismic and potential early afterslip distribution of the 2009 M-w 6.3 L’Aquila, Italy earthquake. Geophys. J. Int. 2014, 199, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Dal Zilio, L.; van Dinther, Y.; Gerya, T.; Avouac, J.P. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nat. Commun. 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Avouac, J.P. Mountain building: From earthquakes to geologic deformation. In Reference Module in Earth Systems and Environmental Sciences. Treatise on Geophysics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Dal Zilio, L.; Hetényi, G.; Hubbard, J.; Bollinger, L. Building the Himalaya from tectonic to earthquake scales. Nat. Rev. Earth Environ. 2021, 2, 251–268. [Google Scholar] [CrossRef]
- Bilham, R.; Mencin, D.; Bendick, R.; Bürgmann, R. Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the Main Himalayan Thrust. Quat. Int. 2017, 462, 3–21. [Google Scholar] [CrossRef]
- Stevens, V.L.; Avouac, J.P. Millenary Mw > 9.0 earthquakes required by geodetic strain in the Himalaya. Geophys. Res. Lett. 2016, 43, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
- Michel, S.; Jolivet, R.; Rollins, C.; Jara, J.; Zilio, L.D. Seismogenic potential of the Main Himalayan Thrust constrained by coupling segmentation and earthquake scaling. Geophys. Res. Lett. 2021, 48, e2021GL093106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Qu, C.; Zhao, D.; Shan, X.; Chen, H.; Liu, L. InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust. Remote Sens. 2022, 14, 306. https://doi.org/10.3390/rs14020306
Zhao L, Qu C, Zhao D, Shan X, Chen H, Liu L. InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust. Remote Sensing. 2022; 14(2):306. https://doi.org/10.3390/rs14020306
Chicago/Turabian StyleZhao, Lei, Chunyan Qu, Dezheng Zhao, Xinjian Shan, Han Chen, and Lian Liu. 2022. "InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust" Remote Sensing 14, no. 2: 306. https://doi.org/10.3390/rs14020306
APA StyleZhao, L., Qu, C., Zhao, D., Shan, X., Chen, H., & Liu, L. (2022). InSAR Constrained Downdip and Updip Afterslip Following the 2015 Nepal Earthquake: New Insights into Moment Budget of the Main Himalayan Thrust. Remote Sensing, 14(2), 306. https://doi.org/10.3390/rs14020306