Automatic Position Estimation Based on Lidar × Lidar Data for Autonomous Aerial Navigation in the Amazon Forest Region
Abstract
:1. Introduction
2. Aerial Autonomous Navigation: LiDAR × LiDAR
2.1. The LiDAR Active Sensor
2.2. Terrain-Referenced Navigation (TRN)
2.3. Test of an Aerial Vehicle Localization Based on LiDAR Reference Data over the Amazon Forest
3. LiDAR × LiDAR Methodology
3.1. The Reference Cloud Point Data
3.2. Binning
3.2.1. Outliers
3.2.2. Filtering Outliers
3.3. Template Matching
3.3.1. Cross-Correlation and Its Problems When Applied on Terrain Data
3.3.2. Normalized Cross-Correlation
3.3.3. Additional Validation Criteria
4. Trajectory and Results on the Amazon Rain Forest
4.1. Dataset
4.2. Experiments
5. Discussion
6. Conclusions and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef] [Green Version]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Dileep, M.R.; Navaneeth, A.V.; Ullagaddi, S.; Danti, A. A Study and Analysis on Various Types of Agricultural Drones and its Applications. In Proceedings of the 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Bangalore, India, 26–27 November 2020; pp. 181–185. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Cao, M.; Nguyen, T.; Xie, L. Post-Mission Autonomous Return and Precision Landing of UAV. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1747–1752. [Google Scholar] [CrossRef]
- Gautam, A.; Sujit, P.B.; Saripalli, S. A survey of autonomous landing techniques for UAVs. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 1210–1218. [Google Scholar] [CrossRef]
- Wang, J.; Lee, H.; Hewitson, S.; Lee, H.K. Influence of dynamics and trajectory on integrated GPS/INS navigation performance. Positioning 2003, 2, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Labowski, M.; Kaniewski, P.; Serafin, P. Inertial navigation system for radar terrain imaging. In Proceedings of the IEEE/ION PLANS 2016, Savannah, GA, USA, 11–14 April 2016; pp. 942–948. [Google Scholar]
- Li, X.; Zhang, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 2015, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.X.; Sgammini, M.; Lu, M.; Kubo, N. Protecting GNSS Receivers From Jamming and Interference. Proc. IEEE 2016, 104, 1327–1338. [Google Scholar] [CrossRef]
- Cilliers, P.; Opperman, B.; Meyer, R. Investigation of ionospheric scintillation over South Africa and the South Atlantic Anomaly using GPS signals: First results. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 2, p. II-879. [Google Scholar]
- Kim, T.H.; Sin, C.S.; Lee, S. Analysis of effect of spoofing signal in GPS receiver. In Proceedings of the 2012 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, 17–21 October 2012; pp. 2083–2087. [Google Scholar]
- Kim, T.H.; Sin, C.S.; Lee, S.; Kim, J.H. Analysis of effect of anti-spoofing signal for mitigating to spoofing in GPS L1 signal. In Proceedings of the 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju, Korea, 20–23 October 2013; pp. 523–526. [Google Scholar]
- Aon, E.F.; Othman, A.R.; Ho, Y.H.; Shaddad, R. Analysis of GPS link ionospheric scintillation during solar maximum at UTeM, Malaysia. In Proceedings of the 2014 IEEE 2nd International Symposium on Telecommunication Technologies (ISTT), Langkawi, Malaysia, 24–26 November 2014; pp. 84–87. [Google Scholar]
- Ahmed, W.A.; Wu, F.; Agbaje, G.I. Analysis of GPS ionospheric scintillation during solar maximum at mid-latitude. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4151–4154. [Google Scholar]
- Sun, X.; Zhang, Z.; Ji, Y.; Yan, S.; Fu, W.; Chen, Q. Algorithm of ionospheric scintillation monitoring. In Proceedings of the 2018 7th International Conference on Digital Home (ICDH), Guilin, China, 30 November–1 December 2018; pp. 264–268. [Google Scholar]
- Gulati, I.; Li, H.; Stainton, S.; Johnston, M.; Dlay, S. Investigation of Ionospheric Phase Scintillation at Middle-Latitude Receiver Station. In Proceedings of the 2019 International Symposium ELMAR, Zadar, Croatia, 23–25 September 2019; pp. 191–194. [Google Scholar]
- Datta-Barua, S.; Doherty, P.; Delay, S.; Dehel, T.; Klobuchar, J.A. Ionospheric scintillation effects on single and dual frequency GPS positioning. In Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 336–346. [Google Scholar]
- Steenburgh, R.; Smithtro, C.; Groves, K. Ionospheric scintillation effects on single frequency GPS. Space Weather 2008, 6. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Aquino, M.; Veettil, S.V. Ionospheric scintillation intensity fading characteristics and GPS receiver tracking performance at low latitudes. GPS Solut. 2019, 23, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.; Retterer, J.; Yizengaw, E.; Wiens, K.; Wing, S.; Groves, K.; Caton, R.; Bridgwood, C.; Francis, M.; Terkildsen, M.; et al. Using solar wind data to predict daily GPS scintillation occurrence in the African and Asian low-latitude regions. Geophys. Res. Lett. 2014, 41, 8176–8184. [Google Scholar] [CrossRef]
- Mokhtar, M.; Rahim, N.; Ismail, M.; Buhari, S. Ionospheric Perturbation: A Review of Equatorial Plasma Bubble in the Ionosphere. In Proceedings of the 2019 6th International Conference on Space Science and Communication (IconSpace), Johor, Malaysia, 28–30 July 2019; pp. 23–28. [Google Scholar]
- Takahashi, H.; Taylor, M.J.; Sobral, J.; Medeiros, A.; Gobbi, D.; Santana, D. Fine structure of the ionospheric plasma bubbles observed by the OI 6300 and 5577 airglow images. Adv. Space Res. 2001, 27, 1189–1194. [Google Scholar] [CrossRef]
- Silva, D.; Takahashi, H.; Wrasse, C.; Figueireido, C. Characteristics of ionospheric bubbles observed by TEC maps in Brazilian sector. In Proceedings of the 15th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, 31 July–3 August 2017; pp. 1714–1716. [Google Scholar] [CrossRef]
- Briechle, K.; Hanebeck, U.D. Template Matching Using Fast Normalized Cross Correlation; Optical Pattern Recognition XII; Casasent, D.P., Chao, T.H., Eds.; International Society for Optics and Photonics, SPIE. 2001; Volume 4387, pp. 95–102. Available online: https://spie.org/Publications/Proceedings/Paper/10.1117/12.421129?SSO=1 (accessed on 15 November 2021).
- Shiguemori, E.H.; Saotome, O. UAV visual autolocalization based on automatic landmark recognition. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W3, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Nistér, D.; Naroditsky, O.; Bergen, J. Visual odometry. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Washington, DC, USA, 27 June–2 July 2004; Volume 1, p. I-I. [Google Scholar] [CrossRef]
- Conte, G.; Doherty, P. An Integrated UAV Navigation System Based on Aerial Image Matching. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MO, USA, 1–8 March 2008; pp. 1–10. [Google Scholar] [CrossRef]
- Goltz, G.A.M.; Shiguemori, E.H.; Campos Velho, H.F. UAV Position Estimation By Image Processing Using Neural Networks. In Proceedings of the X Brazilian Congress on Computational Intelligence (CBIC-2011), Joinville, Brazil, 3–6 October 2011; pp. 9–17. [Google Scholar]
- Silva, C.A.O.; Goltz, G.A.M.; Shiguemori, E.H.; Castro, C.L.; Campos Velho, H.F.; Braga, A.P. Image matching applied to autonomous navigation of unmanned aerial vehicles. Int. J. High Perform. 2016, 6, 205–212. [Google Scholar] [CrossRef]
- Braga, J.R.G.; Campos Velho, H.F.; Conte, G.; Doherty, P.; Shiguemori, E.H. An image matching system for autonomous UAV navigation based on neural network. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [Google Scholar]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. SAR Image Classification Using Few-Shot Cross-Domain Transfer Learning. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 907–915. [Google Scholar] [CrossRef]
- Zhang, L.; Zhai, Z.; He, L.; Wen, P.; Niu, W. Infrared-inertial navigation for commercial aircraft precision landing in low visibility and gps-denied environments. Sensors 2019, 19, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papachristos, C.; Mascarich, F.; Alexis, K. Thermal-inertial localization for autonomous navigation of aerial robots through obscurants. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 394–399. [Google Scholar]
- Silva, W.; Shiguemori, E.H.; Vijaykumar, N.L.; Campos Velho, H.F. Estimation of UAV position with use of thermal infrared images. In Proceedings of the International Conference on Sensing Technology (ICST-2015), Auckland, New Zealand, 8–10 December 2015; pp. 211–217. [Google Scholar]
- Qian, J.; Chen, K.; Chen, Q.; Yang, Y.; Zhang, J.; Chen, S. Robust Visual-Lidar Simultaneous Localization and Mapping System for UAV. IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [Google Scholar] [CrossRef]
- Markiewicz, J.; Abratkiewicz, K.; Gromek, A.; Ostrowski, W.; Samczyński, P.; Gromek, D. Geometrical matching of SAR and optical images utilizing ASIFT features for SAR-based navigation aided systems. Sensors 2019, 19, 5500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjanic, Z.; Gustafsson, F. Fusion of information from SAR and optical map images for aided navigation. In Proceedings of the 2012 15th International Conference on Information Fusion, Suntec City, Singapore, 9 July 2012; pp. 1705–1711. [Google Scholar]
- Campbell, J.; De Haag, M.U.; van Graas, F.; Young, S. Light detection and ranging-based terrain navigation-a concept exploration. In Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 461–469. [Google Scholar]
- Campbell, J.; De Haag, M.U.; van Graas, F. Terrain-Referenced Positioning Using Airborne Laser Scanner. Navigation 2005, 52, 189–197. [Google Scholar] [CrossRef]
- Toth, C.; Grejner-Brzezinska, D.A.; Lee, Y.J. Terrain-based navigation: Trajectory recovery from LiDAR data. In Proceedings of the 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; pp. 760–765. [Google Scholar]
- Leines, M.T.; Raquet, J.F. Terrain reference navigation using sift features in lidar range-based data. In Proceedings of the 2015 International Technical Meeting of The Institute of Navigation, Dana Point, CA, USA, 26–28 January 2015; pp. 239–250. [Google Scholar]
- Hemann, G.; Singh, S.; Kaess, M. Long-range GPS-denied aerial inertial navigation with LIDAR localization. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 1659–1666. [Google Scholar] [CrossRef]
- Lewis, J. Fast Template Matching. In Proceedings of the Vision Interface 95. Canadian Image Processing and Pattern Recognition Society, Quebec City, QC, Canada, 15–19 May 1995; pp. 120–123. [Google Scholar]
Specification | Value |
---|---|
LiDAR sensor | HARRIER 68i |
Wavelength | 1550 nm |
Scan frequency | 5 Hz to 200 Hz |
Field of view | Up to 30 |
Pulse density requested | 4 pulses/m |
Footprint | 30 cm |
Flying height | 600 m |
Track width on the ground | 494 m (avg) |
RMSE—Square Bin | RMSE—Circular Bin | |||
---|---|---|---|---|
Data | CC | NCC | CC | NCC |
Intensity | 2020.17 | 6.94 | 2026.21 | 6.88 |
Surface | 1223.03 | 7.06 | 1220.37 | 6.93 |
Surface Filtered | 1227.56 | 7.04 | 1225.41 | 7.03 |
Terrain | 1239.87 | 1598.42 | 1239.87 | 1441.43 |
Joint | 1045.22 | 6.74 | 1075.28 | 6.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salles, R.N.; Campos Velho, H.F.d.; Shiguemori, E.H. Automatic Position Estimation Based on Lidar × Lidar Data for Autonomous Aerial Navigation in the Amazon Forest Region. Remote Sens. 2022, 14, 361. https://doi.org/10.3390/rs14020361
Salles RN, Campos Velho HFd, Shiguemori EH. Automatic Position Estimation Based on Lidar × Lidar Data for Autonomous Aerial Navigation in the Amazon Forest Region. Remote Sensing. 2022; 14(2):361. https://doi.org/10.3390/rs14020361
Chicago/Turabian StyleSalles, Roberto Neves, Haroldo Fraga de Campos Velho, and Elcio Hideiti Shiguemori. 2022. "Automatic Position Estimation Based on Lidar × Lidar Data for Autonomous Aerial Navigation in the Amazon Forest Region" Remote Sensing 14, no. 2: 361. https://doi.org/10.3390/rs14020361
APA StyleSalles, R. N., Campos Velho, H. F. d., & Shiguemori, E. H. (2022). Automatic Position Estimation Based on Lidar × Lidar Data for Autonomous Aerial Navigation in the Amazon Forest Region. Remote Sensing, 14(2), 361. https://doi.org/10.3390/rs14020361