Tree Species Classification Based on Fusion Images by GF-5 and Sentinel-2A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.3. Methods
2.3.1. Image Fusion
2.3.2. Forest Extraction
2.3.3. Band Selection of Fusion Image
2.3.4. Feature Extraction
2.3.5. Random Forest Classifier
- (1)
- Scheme 1: Spectral features (all bands), Images preprocessed by GF-5;
- (2)
- Scheme 2: Spectral features (all bands), fusion image;
- (3)
- Scheme 3: Spectral features (SF), band selection, fusion image;
- (4)
- Scheme 4: SF and vegetation indices (SF + VI);
- (5)
- Scheme 5: SF and texture features (SF + TF);
- (6)
- Scheme 6: SF, VI and topographic features (SF + TGF + VI);
- (7)
- Scheme 7: SF, TGF, TF and vegetation indices (SF + TGF + TF + VI);
- (8)
- Scheme 8: SF, TGF, TF, VI (SF + TGF + TF + VI), features of MDA selection;
- (9)
- Scheme 9: SF, TGF, TF, VI (SF + TGF + TF + VI), features of MDG selection;
- (10)
- Scheme 10: Spectral features (10 bands), Images preprocessed by Sentinel-2A.
3. Results
3.1. Images Fusion and Evaluation
3.2. Forest Extraction Results
3.3. Feature Importance of Forest Type Identification
3.4. Classification Results and Evaluation of Different Schemes
3.5. Results of Forest Type Mapping
4. Discussion
5. Conclusions
- (1)
- GS fusion images were superior to harmonic analysis fusion images according to the comprehensive quality evaluation indexes.
- (2)
- The overall accuracy and Kappa coefficient were higher than the classification results of single remote sensing data when using the IFZ to extract forests and fusing features from a single data source (vegetation indices, texture features, and topographic features) for classification.
- (3)
- The fused images had high spectral and spatial resolution, and the overall accuracy and Kappa coefficients of tree species classification were better than those of the original GF-5 image. The RF importance ranking results showed that WBI, Aspect, NDNI, ARI2, FRI, MRENDVI, and the mean value of textural features was more important, which should be focused on when using hyperspectral for tree species classification later.
- (1)
- In this paper, the spatial resolution of GF-5 and Sentinel-2A is 10 m after fusion; considering the growth condition and canopy size of each tree species in the landscape forest area, and there are some mixed image elements at the junction of different tree species, higher resolution images can be considered for fusion, and some new image fusion methods can also be tried.
- (2)
- When selecting the method for tree classification, this study used the prevalent RF algorithm, which can be classified using the more popular deep learning and migration learning methods, to further improve the classification results.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Xia, K.; Feng, H.; Yang, Y.; Du, X. Tree Species Classification Using Deep Learning and RGB Optical Images Obtained by an Unmanned Aerial Vehicle. J. For. Res. 2021, 32, 1879–1888. [Google Scholar] [CrossRef]
- Ye, N.; Morgenroth, J.; Xu, C.; Chen, N. Indigenous Forest Classification in New Zealand—A Comparison of Classifiers and Sensors. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102395. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal Worldview-2 and Worldview-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef] [Green Version]
- Heller, R.C.; Doverspike, G.E.; Aldrich, R.C. Identification of Tree Species on Large—Scale Panchromatic and Color Aerial Photographs; U.S. Deptartment of Agriculture, Forest Service: Washington, DC, USA, 1964.
- Vieira, I.C.G.; de Almeida, A.S.; Davidson, E.A.; Stone, T.A.; Reis De Carvalho, C.J.; Guerrero, J.B. Classifying Successional Forests Using Landsat Spectral Properties and Ecological Characteristics in Eastern Amazônia. Remote Sens. Environ. 2003, 87, 470–481. [Google Scholar] [CrossRef]
- Walsh, S.J. Coniferous Tree Species Mapping Using LANDSAT Data. Remote Sens. Environ. 1980, 9, 11–26. [Google Scholar] [CrossRef]
- Brown De Colstoun, E.C.; Story, M.H.; Thompson, C.; Commisso, K.; Smith, T.G.; Irons, J.R. National Park Vegetation Mapping Using Multitemporal Landsat 7 Data and a Decision Tree Classifier. Remote Sens. Environ. 2003, 85, 316–327. [Google Scholar] [CrossRef]
- Wolter, P.T.; Mladenoff, D.J.; Host, G.E.; Crow, T.R. Improved Fotest Glassification in the Northern Lake State Using Multi-Temporal Lndsat Lmage. Photogramm. Eng. Remote Sens. 1995, 61, 1129–1143. [Google Scholar]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral Discrimination of Tropical Rain Forest Tree Species at Leaf to Crown Scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Goodenough, D.G.; Dyk, A.; Niemann, K.O.; Pearlman, J.S.; Chen, H.; Han, T.; Murdoch, M.; West, C. Processing Hyperion and ALI for Forest Classification. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1321–1331. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree Species Classification in the Southern Alps Based on the Fusion of Very High Geometrical Resolution Multispectral/Hyperspectral Images and LiDAR Data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Aval, J.; Fabre, S.; Zenou, E.; Sheeren, D.; Fauvel, M.; Briottet, X. Object-Based Fusion for Urban Tree Species Classification from Hyperspectral, Panchromatic and NDSM Data. Int. J. Remote Sens. 2019, 40, 5339–5365. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A. Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier. Remote Sens. 2012, 4, 1820–1855. [Google Scholar] [CrossRef] [Green Version]
- Goodbody, T.R.H.; Coops, N.C.; Marshall, P.L.; Piotr, T.; Patrick, C. Unmanned Aerial Systems for Precision Forest Inventory Purposes: A Review and Case Study. For. Chron. 2017, 93, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Torresan, C.; Berton, A.; Carotenuto, F.; di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry Applications of UAVs in Europe: A Review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Hartling, S.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Carron, J. Urban Tree Species Classification Using a Worldview-2/3 and LiDAR Data Fusion Approach and Deep Learning. Sensors 2019, 19, 1284. [Google Scholar] [CrossRef] [Green Version]
- Rochdi, N.; Yang, X.; Staenz, K.; Patterson, S.; Purdy, B. Mapping Tree Species in a Boreal Forest Area Using RapidEye and Lidar Data. Earth Resour. Environ. Remote Sens./GIS Appl. V 2014, 9245, 92450Z. [Google Scholar] [CrossRef]
- Zhao, D.; Pang, Y.; Liu, L.; Li, Z. Individual Tree Classification Using Airborne Lidar and Hyperspectral Data in a Natural Mixed Forest of Northeast China. Forests 2020, 11, 303. [Google Scholar] [CrossRef] [Green Version]
- Papeş, M.; Tupayachi, R.; Martínez, P.; Peterson, A.T.; Powell, G.V.N. Using Hyperspectral Satellite Imagery for Regional Inventories: A Test with Tropical Emergent Trees in the Amazon Basin. J. Veg. Sci. 2010, 21, 342–354. [Google Scholar] [CrossRef]
- George, R.; Padalia, H.; Kushwaha, S.P.S. Forest Tree Species Discrimination in Western Himalaya Using EO-1 Hyperion. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 140–149. [Google Scholar] [CrossRef]
- Lu, M.; Chen, B.; Liao, X.; Yue, T.; Yue, H.; Ren, S.; Li, X.; Nie, Z.; Xu, B. Forest Types Classification Based on Multi-Source Data Fusion. Remote Sens. 2017, 9, 1153. [Google Scholar] [CrossRef]
- Xi, Y.; Ren, C.; Wang, Z.; Wei, S.; Bai, J.; Zhang, B.; Xiang, H.; Chen, L. Mapping Tree Species Composition Using OHS-1 Hyperspectral Data and Deep Learning Algorithms in Changbai Mountains, Northeast China. Forests 2019, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Vangi, E.; D’amico, G.; Francini, S.; Giannetti, F.; Lasserre, B.; Marchetti, M.; Chirici, G. The New Hyperspectral Satellite PRISMA: Imagery for Forest Types Discrimination. Sensors 2021, 21, 1182. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Lin, Y.; Zhang, H.; Wang, F.; Liu, M.; Lin, H. GF-5 Hyperspectral Data for Species Mapping of Mangrove in Mai Po, Hong Kong. Remote Sens. 2020, 12, 656. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Gu, L.; Ren, R.; Yang, S. Forest Classification Based on GF-5 Hyperspectral Remote Sensing Data in Northeast China. SPIE 2020, 11501, 49. [Google Scholar] [CrossRef]
- Meng, X.; Shen, H.; Li, H.; Zhang, L.; Fu, R. Review of the Pansharpening Methods for Remote Sensing Images Based on the Idea of Meta-Analysis: Practical Discussion and Challenges. Inf. Fusion 2019, 46, 102–113. [Google Scholar] [CrossRef]
- Qiu, C.; Wei, J.; Dong, Q. Research of Image Fusion Method about ZY-3 Panchromatic Image and Multispectral Image. In Proceedings of the 5th International Workshop on Earth Observation and Remote Sensing Applications, EORSA 2018, Xi’an, China, 18–20 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Li, C.; Liu, L.; Wang, J.; Zhao, C.; Wang, R. Comparison of Two Methods of the Fusion of Remote Sensing Images with Fidelity of Spectral Information. Int. Geosci. Remote Sens. Symp. 2004, 4, 2561–2564. [Google Scholar] [CrossRef]
- Zheng, W.; Li, X.; Sun, Y. Study on the Quality and Adaptability of Fusion Methods Based on Worldview-2 Remote Sensing Image. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V; SPIE: Bellingham, DC, USA, 2014; Volume 9263, pp. 323–331. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Zhang, Y. Comparison of Fusion Algorithms for ALOS Panchromatic and Multispectral Images. In Proceedings of the 2008 International Workshop on Education Technology and Training and 2008 International Workshop on Geoscience and Remote Sensing, ETT and GRS 2008, Shanghai, China, 21–22 December 2008; Volume 2, pp. 167–170. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A Crop Phenology Detection Method Using Time-Series MODIS Data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Bradley, B.A.; Jacob, R.W.; Hermance, J.F.; Mustard, J.F. A Curve Fitting Procedure to Derive Inter-Annual Phenologies from Time Series of Noisy Satellite NDVI Data. Remote Sens. Environ. 2007, 106, 137–145. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop Identification Using Harmonic Analysis of Time-Series AVHRR NDVI Data. Comput. Electron. Agric. 2003, 37, 127–139. [Google Scholar] [CrossRef]
- Yang, K.M.; Zhang, T.; Wang, L.B.; Qian, X.L.; Wang, L.W.; Liu, S.W. Harmonic Analysis Fusion of Hyperspectral Image and Its Spectral Information Fidelity Evaluation. Spectrosc. Spectr. Anal. 2013, 33, 2496–2501. [Google Scholar] [CrossRef]
- Ma, M.; Liu, J.; Liu, M.; Zeng, J.; Li, Y. Tree Species Classification Based on Sentinel-2 Imagery and Random Forest Classifier in the Eastern Regions of the Qilian Mountains. Forests 2021, 12, 1736. [Google Scholar] [CrossRef]
- Archer, K.J.; Kimes, R.V. Empirical Characterization of Random Forest Variable Importance Measures. Comput. Stat. Data Anal. 2008, 52, 2249–2260. [Google Scholar] [CrossRef]
- Deng, S.; Katoh, M.; Guan, Q.; Yin, N.; Li, M. Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies. Remote Sens. 2013, 6, 87–110. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liu, J.; Atzberger, C.; Jiang, Y.; Ma, M.; Wang, X. Zanthoxylum Bungeanum Maxim Mapping with Multi-Temporal Sentinel-2 Images: The Importance of Different Features and Consistency of Results. ISPRS J. Photogramm. Remote Sens. 2021, 174, 68–86. [Google Scholar] [CrossRef]
- Sarp, G. Spectral and Spatial Quality Analysis of Pan-Sharpening Algorithms: A Case Study in Istanbul. Eur. J. Remote Sens. 2014, 47, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Du, P.; Su, H. Harmonic Analysis for Hyperspectral Image Classification Integrated with PSO Optimized SVM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2131–2146. [Google Scholar] [CrossRef]
- Shi, W.; Zhu, C.Q.; Tian, Y.; Nichol, J. Wavelet-Based Image Fusion and Quality Assessment. Int. J. Appl. Earth Obs. Geoinf. 2005, 6, 241–251. [Google Scholar] [CrossRef]
- Chu, J.; Fan, J.; Chen, Y.; Zhang, F. A Comparative Analysis on GF-2 Remote Sensing Image Fusion Effects. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3770–3773. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Optimal Clustering Framework for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5910–5922. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Shang, K.; Xie, Y.; Wei, H. Study on Sophisticated Vegetation Classification for AHSI/GF-5 Remote Sensing Data. In Proceedings of the MIPPR 2019: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, Wuhan, China, 2–3 November 2019. [Google Scholar] [CrossRef]
- Ba, A.; Laslier, M.; Dufour, S.; Hubert-Moy, L. Riparian Trees Genera Identification Based on Leaf-on/Leaf-off Airborne Laser Scanner Data and Machine Learning Classifiers in Northern France. Int. J. Remote Sens. 2020, 41, 1645–1667. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using Polarimetric and Spatial Features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Marcello, J.; Ibarrola-Ulzurrun, E.; Gonzalo-Martín, C.; Chanussot, J.; Vivone, G. Assessment of Hyperspectral Sharpening Methods for the Monitoring of Natural Areas Using Multiplatform Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8208–8222. [Google Scholar] [CrossRef]
- Ren, K.; Sun, W.; Meng, X.; Yang, G.; Du, Q. Fusing China GF-5 Hyperspectral Data with GF-1, GF-2 and Sentinel-2a Multispectral Data: Which Methods Should Be Used? Remote Sens. 2020, 12, 882. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with Ziyuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xie, F.; Zhang, L. Preprocessing and Fusion Analysis of GF-2 Satellite Remote-Sensed Spatial Data. In Proceedings of the 2018 International Conference on Information Systems and Computer Aided Education (ICISCAE), Changchun, China, 6–8 July 2018; pp. 24–29. [Google Scholar]
- Mura, M.D.; Vivone, G.; Restaino, R.; Addesso, P.; Chanussot, J. Global and Local Gram-Schmidt Methods for Hyperspectral Pansharpening. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 37–40. [Google Scholar] [CrossRef]
- Yan, B.; Kong, Y. A Fusion Method of SAR Image and Optical Image Based on NSCT and Gram-Schmidt Transform. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2332–2335. [Google Scholar]
- Zhang, W.; Du, P.; Lin, C.; Fu, P.; Wang, X.; Bai, X.; Zheng, H.; Xia, J.; Samat, A. An Improved Feature Set for Hyperspectral Image Classification: Harmonic Analysis Optimized by Multiscale Guided Filter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3903–3916. [Google Scholar] [CrossRef]
- Xiang, P.; Song, J.; Li, H.; Gu, L.; Zhou, H. Hyperspectral Anomaly Detection with Harmonic Analysis and Low-Rank Decomposition. Remote Sens. 2019, 11, 3028. [Google Scholar] [CrossRef] [Green Version]
- Penuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The Reflectance at the 950-970 Nm Region as an Indicator of Plant Water Status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Li, J.; Pang, Y.; Li, Z.; Jia, W. Tree Species Classification of Airborne Hyperspectral Image in Cloud Shadow Area. Springer Proc. Phys. 2020, 232, 389–398. [Google Scholar] [CrossRef]
- Peña, M.A.; Brenning, A. Assessing Fruit-Tree Crop Classi Fi Cation from Landsat-8 Time Series for the Maipo Valley, Chile. Remote Sens. Environ. 2015, 171, 234–244. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Dian, Y.; Li, Z.; Pang, Y. Spectral and Texture Features Combined for Forest Tree Species Classification with Airborne Hyperspectral Imagery. J. Indian Soc. Remote Sens. 2015, 43, 101–107. [Google Scholar] [CrossRef]
- Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of Machine Learning Algorithms for Forest Stand Species Mapping Using Sentinel-2 Imagery and Environmental Data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef] [Green Version]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef] [Green Version]
- Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support Vector Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sens. 2021, 13, 2581. [Google Scholar] [CrossRef]
- Xi, Y.; Ren, C.; Tian, Q.; Ren, Y.; Dong, X.; Zhang, Z. Exploitation of Time Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed Tree Species Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7589–7603. [Google Scholar] [CrossRef]
Tree Species | Numbers of Pixels | Area (m2) |
---|---|---|
Pinus massoniana (PM) | 450 | 4500 |
Pinus elliottii (PE) | 135 | 1350 |
Quercus acutissima (QA) | 450 | 4500 |
Koelreuteria paniculata Laxm (KPL) | 375 | 3750 |
Celtis sinensis Pers. (CSP) | 450 | 4500 |
Liquidambar formosana Hance (LFH) | 450 | 4500 |
Phyllostachys edulis (BA) | 225 | 2250 |
Band Combination | OIF |
---|---|
42, 114, 280 | 708.93 |
42, 115, 280 | 708.67 |
42, 113, 280 | 708.40 |
41, 114, 280 | 707.46 |
41, 115, 280 | 707.20 |
41, 113, 280 | 707.93 |
40, 114, 280 | 705.99 |
40, 115, 280 | 705.73 |
40, 113, 280 | 705.46 |
42, 112, 280 | 705.39 |
39, 114, 280 | 705.68 |
39, 115, 280 | 704.68 |
39, 113, 280 | 703.93 |
Image | AG | SD | IE | MV | MSE |
---|---|---|---|---|---|
GS | 0.000005 | 0.0767 | 2.4729 | 0.0830 | 0.0242 |
HAF | 0.000020 | 0.0709 | 2.0261 | 0.0729 | 0.0245 |
IFZ | OA (%) | KC |
---|---|---|
3 | 67.0000% | 0.3400 |
2.5 | 76.1667% | 0.5233 |
2 | 88.3333% | 0.7667 |
Schemes | Data (Feature) | Number of Features | OA (%) | KC |
---|---|---|---|---|
Scheme 1 | (GF-5) spectral features | 282 | 61.17 | 0.53 |
Scheme 2 | fusion image | 282 | 79.15 | 0.75 |
Scheme 3 | selected band (SF) | 20 | 78.64 | 0.75 |
Scheme 4 | SF + VI | 46 | 83.08 | 0.80 |
Scheme 5 | SF + TF | 180 | 81.49 | 0.78 |
Scheme 6 | SF + TGF + VI | 48 | 83.83 | 0.80 |
Scheme 7 | SF + TGF + TF + VI | 208 | 84.93 | 0.82 |
Scheme 8 | MDA | 32 | 86.93 | 0.85 |
Scheme 9 | MDG | 32 | 86.63 | 0.84 |
Scheme 10 | (Sentinel-2A) spectral features | 10 | 63.18 | 0.56 |
Reference Data | ||||||||
---|---|---|---|---|---|---|---|---|
Tree Species | LFH | PE | QA | KPL | PM | BA | CSP | UA (%) |
Non-forest | 17 | 16 | 2 | 15 | 1 | 0 | 6 | □ |
LFH | 216 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
PE | 1 | 68 | 0 | 0 | 0 | 0 | 0 | 98.55 |
QA | 16 | 0 | 241 | 0 | 0 | 0 | 0 | 93.77 |
KPL | 20 | 3 | 16 | 226 | 0 | 0 | 0 | 85.28 |
PM | 12 | 0 | 29 | 0 | 284 | 0 | 0 | 87.38 |
BA | 4 | 0 | 9 | 0 | 5 | 147 | 0 | 89.09 |
CSP | 22 | 3 | 3 | 9 | 10 | 3 | 294 | 85.47 |
PA (%) | 70.13 | 75.56 | 80.33 | 90.4 | 94.67 | 98 | 98 | □ |
OA (%) | 86.93 | □ | □ | □ | □ | □ | □ | □ |
Kappa | 0.85 | □ | □ | □ | □ | □ | □ | □ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Pan, J.; Sun, Y. Tree Species Classification Based on Fusion Images by GF-5 and Sentinel-2A. Remote Sens. 2022, 14, 5088. https://doi.org/10.3390/rs14205088
Chen W, Pan J, Sun Y. Tree Species Classification Based on Fusion Images by GF-5 and Sentinel-2A. Remote Sensing. 2022; 14(20):5088. https://doi.org/10.3390/rs14205088
Chicago/Turabian StyleChen, Weihua, Jie Pan, and Yulin Sun. 2022. "Tree Species Classification Based on Fusion Images by GF-5 and Sentinel-2A" Remote Sensing 14, no. 20: 5088. https://doi.org/10.3390/rs14205088
APA StyleChen, W., Pan, J., & Sun, Y. (2022). Tree Species Classification Based on Fusion Images by GF-5 and Sentinel-2A. Remote Sensing, 14(20), 5088. https://doi.org/10.3390/rs14205088