LiDAR and UAV SfM-MVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Crater Rim and Its Talus
3.2. Dome’s Topographic and Volumic Change with the Localized Explosions
4. Discussion
4.1. Surface Deformation and Interpretation
4.2. Hazards in Quiescent Time, When the Volcano Acts as a Mountain
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Voight, B.; Elsworth, D. Instability and collapse of hazardous gas-pressurized lava-domes. Geophys. Res. Lett. 2000, 27, 1–4. [Google Scholar] [CrossRef]
- Swanson, D.A.; Holcomb, R.T. Regularities in Growth of the Mount St. Helens Dacite Dome, 1980–1986. IAVCEI Proc. Lava Flows Domes 1990, 2, 3–24. [Google Scholar]
- Loughlin, S.C.; Calder, E.S.; Clarke, A.; Cole, P.D.; Luckett, R.; Mangan, M.T.; Pyle, D.M.; Sparks, R.S.J.; Voight, B.; Watts, R.B. Pyroclastic flows and surges generated by the 25 June 1997 dome collapse, Soufriere Hills Volcano, Montserrat. In The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999; Druit, T.H., Kokelaar, B.P., Eds.; Geological Society: London, UK, 1990; Volume 21, pp. 129–209. [Google Scholar]
- Darmawan, H.; Walter, T.R.; Troll, V.R.; Budi-Santoso, A. Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption. Nat. Hazards Earth Syst. Sci. 2018, 18, 3267–3281. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Allouis, C.; Lissak, N.; Hotta, N.; Shinohara, Y.; Hadmokok, D.S.; Vilimek, V.; Wassmer, P.; Lavigne, F.; Setiawan, A.; et al. High-Reolustion Point-Cloud for Landslides in the 21st Century: From Data Acquisition to New Processing Concepts, In Understanding and Reducing Landslide Disaster Risk; Arbanas, Z., Ed.; Springer Nature: Cham, Switzerland, 2021; Volume 6, pp. 199–213. [Google Scholar]
- Darmawan, H.; Yuliantoro, P.; Rakhman, A.; Santoso, A.B.; Humaida, H.; Suryanto, W. Dynamic velocity and seismic characteristics of gravitational rockfalls at the Merapi lava dome. J. Volcanol. Geotherm. Res. 2020, 404, 107010. [Google Scholar] [CrossRef]
- Vazquez, R.; Macias, J.L.; Alcala-Reygosa, J.; Arce, J.L.; Jimenez-Haro, A.; Fernandez, S.; Carlon, T.; Saucedo, R.; Sanchez-Nunez, J.M. Numerical modeling and hazard implications of landslides at the Ardillas Volcanic Dome (Tacana Volcanic Complex, Mexico-Guatemala). Nat. Hazards 2022, 113, 1305–1333. [Google Scholar] [CrossRef]
- Kelfoun, K.; Santoso, A.B.; Latchimy, T.; Bontemps, M.; Nurdienm, I.; Beauducel, F.; Fahmi, A.; Putra, R.; Dahamna, N.; Laurin, A.; et al. Growth and collapse of the 2018–2019 lava dome of Merapi Volcano. Bull. Volcanol. 2021, 83, 8. [Google Scholar] [CrossRef]
- Gomez, C.; Janin, M.; Lavigne, F.; Gertisser, R.; Charbonnier, S.; Lahitte, P.; Hadmoko, D.S.; Fort, M.; Wassmer, P.; Degroot, V.; et al. Borobudur, a basin under volcanic influence: 361,000 years BP to present. J. Volcanol. Geotherm. Res. 2010, 196, 245–264. [Google Scholar] [CrossRef]
- Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; et al. 10,000 years of explosive eruptions of Merapi Volcano, Central Java: Archeological and modern implications. J. Volcnaol. Geotherm. Res. 2000, 100, 9–50. [Google Scholar] [CrossRef]
- Surono; Jousset, P.; Pallister, J.; Boichu, M.; Buongiorno, M.; Budisantoso, A.; Costa, F.; Andreastuti, S.; Prata, F.; Schneider, D.; et al. The 2010 explosive eruption of Java’s Merapi volcano—A ‘100-year’ event. J. Volcanol. Geotherm. Res. 2012, 241–242, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Charbonnier, S.J.; Germa, A.; Connor, C.B.; Gertisser, R.; Preece, K.; Komorowski, J.-C.; Lavigne, F.; Dixon, T.; Connor, L. Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations. J. Volcanol. Geotherm. Res. 2013, 261, 295–315. [Google Scholar] [CrossRef]
- De Belizal, E.; Lavigne, F.; Robin, A.K.; Sri Hadmoko, D.; Cholik, N.; Thouret, J.C.; Sawudi, D.S.; Muzani, M.; Sartohadi, J.; Vidal, C. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk. Volcanol. Geotherm. Res. 2013, 261, 330–347. [Google Scholar] [CrossRef]
- Komorowski, J.-C.; Jenkins, S.; Baxter, P.J.; Picquout, A.; Lavigne, F.; Charbonnier, S.; Gertisser, R.; Preece, K.; Cholik, N.; Budi-Santo, A.; et al. Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents. J. Volcanol. Geotherm. Res. 2013, 261, 260–294. [Google Scholar] [CrossRef]
- Sri Hadmoko, D.; de Belizal, E.; Mutaqin, B.W.; Dipayana, G.A.; Marfai, M.A.; Lavigne, F.; Sartohdai, J.; Worosuprojo, S.; Starheim, C.A.; Gomez, C. Post-eruptive lahars at Kali Putih following the 2010 eruption of Merapi Volcano, Indonesia: Occurrences and impacts. Nat. Hazards 2018, 94, 419–444. [Google Scholar] [CrossRef]
- Allard, P. Proportions des isotopes 13 C et 12 C du carbone émis à haute température par un dome andésitique en cours de croissance; Le Merapi (Indonésie)—Proportions of C-13 and C-12 isotopes of carbon emitted at high temperature by an andesitic dome during growth; Merapi, Indonesia. C. R. Acad. Sci. Série D 1980, 291, 613–616. [Google Scholar]
- Le Guern, F.; Gerlach, T.M.; Nohl, A. Field gas chromatograph analyses of gases from a glowing dome at Merapi Volcano, Java, Indonesia, 1977, 1978, 1979. J. Volcanol. Geotherm. Res. 1982, 14, 223–245. [Google Scholar] [CrossRef]
- Kelfoun, K. Processus de Croissance et de Déstabilisation des Dômes de lave du Volcan Merapi (Java Centrale, Indonésie). Modélisations Numériques des Dômes, Dynamique des Ecoulements Pyroclastiques Associés et Surveillance par Stéréophotogrammétrie. Ph.D. Thesis, Univ. Blaise Pascal Clermont-Ferrand II, Aubière, France, 1999. [Google Scholar]
- Clocchiatti, R.; Joron, J.-L.; Kerinec, F.; Treuil, M. Quelques données préliminaires sur la lave du dome actuel du volcan Merapi (Java, Indonésie) et sur ses enclaves—Preliminary data on lava from the present dome of the volcano Merapi (Java, Indonesia) and on its xenoliths. C. R. Acad. Sci. Série 2 1982, 295, 817–822. [Google Scholar]
- Voight, B.; Young, K.D.; Hidayat, D. Deformation and seismic precursors to dome-collapse and fountain-collapse nuées ardentes at Merapi Volcano, Java, Indonesia, 1994–1998. J. Volcanol. Geotherm. Res. 2000, 100, 261–287. [Google Scholar] [CrossRef]
- Young, K.D.; Voight, B. Ground deformation at Merapi Volcano, Java, Indonesia: Distance changes, June 1988--October 1995. J. Volcanol. Geotherm. Res. 2000, 100, 233–259. [Google Scholar] [CrossRef]
- Brodscholl, A.; Kirbani, S.B.; Voight, B. Sequential dome-collapse nuées ardentes analyzed from broadband seismic data, Merapi Volcano, Indonesia. J. Volcanol. Geotherm. Res. 2000, 100, 363–369. [Google Scholar] [CrossRef]
- Hodgson, M.E.; Bresnahan, P. Accuracy of Airborne Lidar-Derived Elevation: Empirical Assessment and Error Budget. Photogram. Eng. Remote Sens. 2004, 70, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Csatho, B.; Schenck, T.; Kyle, P.; Wilson, T.; Krabill, W.B. Airborne laser swath mapping of the summit of Erebus volcano, Antarctica: Applications to geological mapping of a volcano. J. Volcanol. Geotherm. Res. 2008, 177, 531–548. [Google Scholar] [CrossRef]
- Darmawan, H.; Troll, V.R.; Walter, T.R.; Deegan, F.M.; Geiger, H.; Heap, M.J.; Seraphine, N.; Harris, C.; Humaida, H.; Muller, D. Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones. Sci. Rep. 2022, 12, 3202. [Google Scholar] [CrossRef] [PubMed]
- Tsunematsu, K.; Ishimine, Y.; Kaneko, T.; Yoshimoto, M.; Fujii, T.; Yamaoka, K. Estimation of ballistic block landing energy during 2014 Mount Ontake eruption. Earth Planets Space 2016, 68, 88. [Google Scholar] [CrossRef]
- Fitzgerald, R.H.; Tsunematsu, K.; Kennedy, B.M.; Breard, E.C.P.; Lube, G.; Wilson, T.M.; Jolly, A.D.; Pawson, J.; Rosenberg, M.D.; Cronin, S.J. The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. J. Volcanol. Geotherm. Res. 2014, 286, 248–262. [Google Scholar] [CrossRef]
- Kataoka, K.S.; Matsumoto, T.; Saito, T.; Nagahashi, Y.; Iyobe, T. Suspended sediment transport diversity in river catchments following the 2014 phreatic eruption at Ontake Volcano, Japan. Earth Planets Space 2019, 71, 15. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, K.S.; Matusmoto, T.; Saito, T.; Kawashima, K.; Nagahashi, Y.; Iyobe, T.; Sasaki, A.; Suzuki, K. Lahar characteristics as a function of triggering mechanism at a seasonally snow-clad volcano: Contrasting lahars following the 2014 phreatic eruption of Ontake Volcano, Japan. Earth Planets Space 2018, 70, 113. [Google Scholar] [CrossRef] [Green Version]
- Tsunetaka, H.; Shinohara, Y.; Hotta, N.; Gomez, C.; Sakai, Y. Multi-decadal changes in the relationships between rainfall characteristics and debris-flow occurrences in response to gully evolution after the 1990-1995 Mount Unzen eruptions. Earth Surf. Process. Landf. 2021, 46, 2141–2162. [Google Scholar] [CrossRef]
- Gomez, C.; Shinohara, Y.; Tsunetaka, H.; Hotta, N.; Bradak, B.; Sakai, Y. Twenty-Five Years of Geomorphological Evolution in the Gokurakudani Gully (Unzen Volcano): Topography, Subsurface Geophysics and Sediment Analysis. Geosciences 2021, 11, 457. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez, C.; Setiawan, M.A.; Listyaningrum, N.; Wibowo, S.B.; Hadmoko, D.S.; Suryanto, W.; Darmawan, H.; Bradak, B.; Daikai, R.; Sunardi, S.; et al. LiDAR and UAV SfM-MVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014. Remote Sens. 2022, 14, 5193. https://doi.org/10.3390/rs14205193
Gomez C, Setiawan MA, Listyaningrum N, Wibowo SB, Hadmoko DS, Suryanto W, Darmawan H, Bradak B, Daikai R, Sunardi S, et al. LiDAR and UAV SfM-MVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014. Remote Sensing. 2022; 14(20):5193. https://doi.org/10.3390/rs14205193
Chicago/Turabian StyleGomez, Christopher, Muhammad Anggri Setiawan, Noviyanti Listyaningrum, Sandy Budi Wibowo, Danang Sri Hadmoko, Wiwit Suryanto, Herlan Darmawan, Balazs Bradak, Rikuto Daikai, Sunardi Sunardi, and et al. 2022. "LiDAR and UAV SfM-MVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014" Remote Sensing 14, no. 20: 5193. https://doi.org/10.3390/rs14205193
APA StyleGomez, C., Setiawan, M. A., Listyaningrum, N., Wibowo, S. B., Hadmoko, D. S., Suryanto, W., Darmawan, H., Bradak, B., Daikai, R., Sunardi, S., Prasetyo, Y., Astari, A. J., Lukman, L., Nurani, I. W., Dede, M., Suhendro, I., Lavigne, F., & Malawani, M. N. (2022). LiDAR and UAV SfM-MVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014. Remote Sensing, 14(20), 5193. https://doi.org/10.3390/rs14205193