Sliding Window Detection and Analysis Method of Night-Time Light Remote Sensing Time Series—A Case Study of the Torch Festival in Yunnan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Research Area
2.1.2. Data Sources
2.2. Methods
2.2.1. NTLRS Data Processing
- VNP46A2 data processing
- 2.
- NPP-VIIRS data processing
2.2.2. Extraction from Minority Areas
2.2.3. Sliding Window Principle and Width Determination
3. Results
3.1. Accuracy Verification
3.2. Analysis of the Temporal and Spatial Pattern of the Torch Festival
4. Discussion
4.1. Comparison of Common Time Series Methods and Sliding Window Method
4.2. Influencing Factors of the Temporal and Spatial Pattern of the Torch Festival
4.3. Significance for the Inheritance and Protection of Ethnic Minority Traditional Cultural Festivals
4.4. Significance of Sliding Windows to the Research of NTLRS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.L.D. An Overview on Data Mining of Nighttime Light Remote Sensing. Acta Geod. Et Cartogr. Sin. 2015, 44, 591–601. [Google Scholar]
- Elvidge, C.D.; Davis, E.R.; Baugh, K.E.; Kihn, E.A. Mapping city lights with night-time data from the DMSP Operational linescan system. Photogramm. Eng. Remote Sens. 1996, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Ma, X.; Tong, X.; Liu, S.; Luo, X.; Xie, H.; Li, C. Optimized Sample Selection in SVM Classification by Combining with DMSP-OLS, Landsat NDVI and GlobeLand30 Products for Extracting Urban Built-Up Areas. Remote Sens. 2017, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Roman, M.O.; Stokes, E.C. Holidays in lights: Tracking cultural patterns in demand for energy services. Earths Future 2015, 3, 182–205. [Google Scholar] [CrossRef]
- Li, D.; Li, X. Applications of Night-time Light Remote Sensing in Evaluating of Socioeconomic Development. J. Macro-Qual. Res. 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, L.; Wan, W.; Li, L.; Yu, T.; Gu, X. Extracting urban areas in China using DMSP/OLS nighttime light data integrated with biophysical composition information. J. Geogr. Sci. 2016, 26, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Witmer, F.D.W.; O’Loughlin, J. Detecting the Effects of Wars in the Caucasus Regions of Russia and Georgia Using Radiometrically Normalized DMSP-OLS Nighttime Lights Imagery. GISci. Remote Sens. 2011, 48, 478–500. [Google Scholar] [CrossRef]
- Li, X.; Li, D. Can night-time light images play a role in evaluating the Syrian Crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Kyba, C.; Mohar, A.; Pintar, G.; Stare, J. A shining example of sustainable church lighting using the EcoSky LED: 96% reduction in energy consumption, and dramatic reduction of light pollution. Int. J. Sustain. Lighting 2018, 19, 132. [Google Scholar] [CrossRef] [Green Version]
- Meier, J.M. Temporal Profiles of Urban Lighting: Proposal for a research design and first results from three sites in Berlin. Int. J. Sustain. Lighting 2018, 20, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Giordano, E.; Ong, C.-E. Light festivals, policy mobilities and urban tourism. Tour. Geogr. 2017, 19, 699–716. [Google Scholar] [CrossRef]
- Coesfeld, J.; Anderson, S.J.; Baugh, K.; Elvidge, C.D.; Schernthanner, H.; Kyba, C.C.M. Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images. Remote Sens. 2018, 10, 1964. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Stathakis, D.; Baltas, P. Seasonal population estimates based on night-time lights. Comput. Environ. Urban Syst. 2018, 68, 133–141. [Google Scholar] [CrossRef]
- Miller, S.D.; Turner, R.E. A Dynamic Lunar Spectral Irradiance Data Set for NPOESS/VIIRS Day/Night Band Nighttime Environmental Applications. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2316–2329. [Google Scholar] [CrossRef]
- Levin, N. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 2017, 193, 150–164. [Google Scholar] [CrossRef]
- Zheng, Q. Nighttime Light Data Processing Methodologies and Polycentric City Monitoring. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.O.; Kalb, V.L.; Miller, S.D.; Zhang, J.; Shrestha, R.M. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sens. Environ. 2021, 263, 112557. [Google Scholar] [CrossRef]
- Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. An online algorithm for segmenting time series. In Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001; pp. 289–296. [Google Scholar]
- Teng, T.; Maolin, S.; Xueguan, S.; Yue, M.; Xiangyu, F. Anomaly Detecting Method for Time Series Based on Sliding Windows. Instrum. Tech. Sens. 2021, 12, 112–116. [Google Scholar]
- Yu, Y.; Zhu, Y.; Li, S.; Wan, D. Time Series Outlier Detection Based on Sliding Window Prediction. Math. Probl. Eng. 2014, 2014, 879736. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Sheng, G.; Liu, Y.; Du, X.; Wang, H.; Jiang, X. Anomalous State Detection of Power Transformer Based on Algorithm Sliding Windows and Clustering. High Volt. Eng. 2016, 42, 4020–4025. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Q.; Liu, Z.; Ma, C.; Gao, P. Prediction of water quality time series based on the dynamic sliding window BP neural network model. J. Environ. Eng. Technol. 2022, 12, 809–815. [Google Scholar] [CrossRef]
- Tang, W.; Ma, S.; Li, C. LSTM ground temperature prediction method based on sliding window. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2021, 48, 377–384. [Google Scholar]
- Liu, J.; Zhang, Z.; Qi, Y. PM2.5 concentration prediction model based on sliding window and LSTM. J. Qiqihar Univ. (Nat. Sci. Ed.) 2022, 38, 87–94. [Google Scholar]
- Wang, X. Origins of Torch Festival and the Problem of Higher Culture in Chinese Ethnology. J. Tsinghua Univ. (Philos. Soc. Sci.) 2012, 27, 5–16+158. [Google Scholar] [CrossRef]
- Xuelan, X.; Yapin, C. On Torch Festival of Yunnan Minorities from Perspective of Folk Culture. J. Honghe Univ. 2020, 18, 51–53. [Google Scholar] [CrossRef]
- Seiji, I.; Sun, H. Legends and Social Customs—A Study on the Story of Torch Festival. Jpn. Stud. 1993, 1993, 51–58. [Google Scholar]
- Li, J. A Brief Discussion on the Festival Customs and Cultural Connotation of the Torch Festival of the Yi Nationality in Chuxiong, Yunnan. Sci. Technol. Vis. 2012, 31, 158. [Google Scholar] [CrossRef]
- Yang, S. Torch Festival and Formation of J. Cultural Circle of Torch Festival. Soc. Sci. Yunnan 2003, 3, 75–79. [Google Scholar]
- Yue, X. Research on the J. Exchange J. Phenomenon of Southern Minority Festivals. J. Southwest Minzu Univ. (Humanit. Soc. Sci.) 2019, 40, 14–19. [Google Scholar]
- Huimin, A. Dilemma and Solution for Contemporary Inheritance of Yi People’s Torch Festival in Yunnan Province. J. South-Cent. Minzu Univ. (Humanit. Soc. Sci.) 2019, 39, 34–38. [Google Scholar]
- Li, C.; Peng, Z. The Ritual Nature of Yi Nationality’s J. DuzeJ.(Torch Festival) and Tourism Development. Tour. Trib. 2009, 24, 79–84. [Google Scholar]
- Yang, L.; Ma, P. Intangible cultural heritage protection from festival tourism, from the perspective of Yi Torch Festival. J. Hubei Minzu Univ. (Philos. Soc. Sci.) 2011, 29, 56–59. [Google Scholar] [CrossRef]
- Xu, X. Authenticity Protection and Tourism Development of Intangible Cultural Heritage—Taking the Torch Festival of Yi Nationality in Liangshan as an Example. J. Chin. Cult. 2015, 5, 187–190. [Google Scholar]
- Xiao, J.; Weng, X. A Historical Study of the Social Fuctions of the Torch Festival—A Case Study of the Torch Festival in Qiubei County. J. Yunnan Minzu Univ. (Philos. Soc. Sci. Ed.) 2008, 4, 47–49. [Google Scholar]
- Government, L.P.S. Basic Situation of Ethnic Minorities in Yunnan Province. Available online: http//www.dhlh.gov.cn/gtj/Web/_F0_0_046KCIXI8D3CLJKRV437RP5RSF.htm (accessed on 27 April 2022).
- Xu, S. New Developments of the Ethnic Minority Population in China. Popul. Res. 2021, 45, 82–87. [Google Scholar]
- Wang, Z.; Shrestha, R.; Rom’an, M.O. NASA’s black marble nighttime lights product suite algorithm theoretical basis document (ATBD). Remote Sens. Environ. 2021, 210, 113–143. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.-C. Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef] [Green Version]
- Jett, S.C. Place-Naming, Environment, and Perception among the Canyon de Chelly Navajo of Arizona. Prof. Geogr. 1997, 49, 481–493. [Google Scholar] [CrossRef]
- Everett-Heath, J. Place Names of the World—Europe; Palgrave Macmillan: London, UK, 2000; pp. XXII, 413. [Google Scholar]
- Zhao, F.; Song, L.; Peng, Z.; Yang, J.; Luan, G.; Chu, C.; Ding, J.; Feng, S.; Jing, Y.; Xie, Z. Night-Time Light Remote Sensing Mapping: Construction and Analysis of Ethnic Minority Development Index. Remote Sens. 2021, 13, 2129. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Zhou, Y.; Dong, B. Impact of temporal compositing on nighttime light data and its applications. Remote Sens. Environ. 2022, 274, 113016. [Google Scholar] [CrossRef]
- Li, F.; Yan, Q.; Zou, Y.; Liu, B. Extraction Accuracy of Urban Built-up Area Based on Nighttime Light Data and POI: A Case Study of Luojia 1-01 and NPP/VIIRS Nighttime Light Images. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 825–835. [Google Scholar] [CrossRef]
- Zhao, F.; Ding, J.; Zhang, S.; Luan, G.; Song, L.; Peng, Z.; Du, Q.; Xie, Z. Estimating Rural Electric Power Consumption Using NPP-VIIRS Night-Time Light, Toponym and POI Data in Ethnic Minority Areas of China. Remote Sens. 2020, 12, 2836. [Google Scholar] [CrossRef]
- Liu, S. Study on Seasonal Changes of VIIRS Nighttime Light Based on Time-Series Analysis. Master’s Thesis, Wuhan University, Wuhan, China, 2020. [Google Scholar]
- Chakrabarti, K.; Ortega-binderberger, M.; Porkaew, K.; Zuo, P.; Mehrotra, S. Similar Shape Retrieval In Mars. IEEE Int. Conf. Multi-Media Expo 2000, 2, 709–712. [Google Scholar] [CrossRef]
- Agrawal, R.; Faloutsos, C.; Swami, A. Efficient similarity search in sequence databases. In Foundations of Data Organization and Algorithms, Proceedings of the 4th International Conference, FODO ′93, Chicago, IL, USA, 13–15 October 1993; Springer: Berlin/Heidelberg, Germany, 1993; pp. 69–84. [Google Scholar]
- Ratanamahatana, C.A.; Keogh, E. Three Myths about Dynamic Time Warping Data Mining. In Proceedings of the 2005 SIAM International Conference on Data Mining (SDM), Newport Beach, CA, USA, 21–23 April 2005; pp. 506–510. [Google Scholar]
- Li, F.; Xiao, J. How to Get Effective Slide-window Size in Time Series Similarity Search. J. Front. Comput. Sci. Technol. 2009, 3, 105–112. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; Mcrae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Egrioglu, E.; Aladag, C.H.; Yolcu, U.; Basaran, M.A.; Uslu, V.R. A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model. Expert Syst. Appl. 2009, 36, 7424–7434. [Google Scholar] [CrossRef]
- Young, P.C. Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis. Comput. Phys. 1999, 117, 113–129. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Ediger, V.S.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Huang, Z. Southwest Ethnic Festival Culture; Yunnan University Press: Kunming, China, 2012; p. 265. [Google Scholar]
- Chi, Y. The current situation and predicament of the protection and development of traditional festival culture of ethnic minorities in Yunnan. J. Yunnan Arts Univ. 2008, 3, 90–94. [Google Scholar] [CrossRef]
Name | Details | Spatial Resolution | Time | Data Sources |
---|---|---|---|---|
NPP-VIIRS NTLRS Data | NPP-VIIRS Cloudless DNB Composite Monthly Average Data | 500 m | 2018–2020 | Earth Observation Group (EOG) (https://eogdata.mines.edu/products/vnl/, access on 23 March 2022) |
VNP46A2 Data | Based on the second daily night light and atmospheric corrected night light (NTL) product in the VIIRS DNB dataset | 500 m | 2018 (days 186–248) 2019 (days 176–238) 2020 (days 195–257) | NASA LAADS DAAC Earth Data Center (https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP46A2/, access on 26 January 2022) |
Toponymic Data | The data of the second national toponym census | \ | 2019 | National Platform for Common Geospatial Information Service (https://www.tianditu.gov.cn/) |
Census Statistics | The sixth census data | \ | 2010 | China Economic and Social Big Data Research Platform (http://data.cnki.net/) |
Administrative Division Boundaries | Vector data in Yunnan Province | \ | 2017 | National Geomatics Center of China (http://www.ngcc.cn/ngcc/) |
Active Fire Data | VIIRS I-Band 375 m Active Fire Data | 375 m | 2018–2020 | NASA Earth Observation Data (https://www.earthdata.nasa.gov/) |
Method | Advantages | Disadvantages |
---|---|---|
STL | Suitable for the seasonally obvious time series data with missing values and outliers | (1) Not conducive to detect sequence change information |
(2) Not conducive to detect the change of data in short cycle time series | ||
SARIMA | Suitable for time series analysis with missing values and obvious seasonality | The non-stationary series need to be converted to stationary series before fitting |
DHR | (1) Suitable for time series analysis with obvious seasonal and periodic changes | Not suitable for short period time series analysis |
(2) The time series with missing values can be analyzed directly | ||
ARIMA | Suitable for short-term forecasting of time series | Not suitable for non-stationary time series analysis |
Sliding Window | (1) Can accurately detect the change of remote sensing data value in a short period | Suitable for the study of the change trend of remote sensing time series data but the accurate value of data cannot be obtained |
(2) Has obvious advantages in the analysis of high frequency observation data, especially remote sensing daily data | ||
(3) The sliding window width can be flexibly adjusted according to the research object |
Week | the 19th | the 20th | the 21st | the 22nd | the 23rd | the 24th | the 25th | the 26th | the 27th | the 28th | the 29th | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | ||||||||||||
2018 | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | Monday | Tuesday | Wednesday | Thursday | |
2019 | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | Monday | Tuesday | Wednesday | |
2020 | Saturday | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | Monday | Tuesday |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Wang, J.; Zhang, Y.; Zhao, F.; Zhu, S.; Jiang, L.; Du, Q.; Zhao, X.; Li, Y. Sliding Window Detection and Analysis Method of Night-Time Light Remote Sensing Time Series—A Case Study of the Torch Festival in Yunnan Province, China. Remote Sens. 2022, 14, 5267. https://doi.org/10.3390/rs14205267
Song L, Wang J, Zhang Y, Zhao F, Zhu S, Jiang L, Du Q, Zhao X, Li Y. Sliding Window Detection and Analysis Method of Night-Time Light Remote Sensing Time Series—A Case Study of the Torch Festival in Yunnan Province, China. Remote Sensing. 2022; 14(20):5267. https://doi.org/10.3390/rs14205267
Chicago/Turabian StyleSong, Lu, Jing Wang, Yiyang Zhang, Fei Zhao, Sijin Zhu, Leyi Jiang, Qingyun Du, Xiaoqing Zhao, and Yimin Li. 2022. "Sliding Window Detection and Analysis Method of Night-Time Light Remote Sensing Time Series—A Case Study of the Torch Festival in Yunnan Province, China" Remote Sensing 14, no. 20: 5267. https://doi.org/10.3390/rs14205267
APA StyleSong, L., Wang, J., Zhang, Y., Zhao, F., Zhu, S., Jiang, L., Du, Q., Zhao, X., & Li, Y. (2022). Sliding Window Detection and Analysis Method of Night-Time Light Remote Sensing Time Series—A Case Study of the Torch Festival in Yunnan Province, China. Remote Sensing, 14(20), 5267. https://doi.org/10.3390/rs14205267