Potential of L- and C- Bands Polarimetric SAR Data for Monitoring Soil Moisture over Forested Sites
Abstract
:1. Introduction
2. SAR Scattering Parameters
2.1. Backscattering Coefficients
2.2. Polarimetric Parameters
2.2.1. Amplitude and Phase of the Correlation Coefficient
2.2.2. Pedestal Height
2.2.3. Polarimetric Decomposition Parameters
3. Study Area
4. Data
4.1. Ground Measurements and Processing
4.2. SAR Data and Processing
- Extraction of the covariance matrix (C) and coherency matrix (T);
- Extraction and computation of the backscattering coefficients and polarimetric parameters;
- Images orthorectification using a road network map created with QuantumGIS and Orthoengine to remove geometric distortions.
5. Methodology
5.1. Extraction of the Backscattering Coefficients and the Polarimetric Parameters
5.2. Linear Regressions and Statistical Analyses
6. Results and Discussion
6.1. Temporal Profiles of the Linear and Circular Backscattering Coefficients
6.1.1. At L-Band Using UAVSAR Data at 30 and 40°
6.1.2. At C-Band Using RADARSAT-2 Data at 20, 25 and 30°
6.2. Potential of PolSAR Parameters for Soil Moisture Retrievals over Forested Sites
6.2.1. From L- and C- bands Backscattering Coefficients
6.2.2. From L and C- bands Polarimetric Parameters
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sokol, J.; NcNairn, H.; Pultz, T.J. Case studies demonstrating the hydrological applications of C-band multipolarized and polarimetric SAR. Can. J. Remote Sens. 2004, 30, 470–483. [Google Scholar] [CrossRef]
- Kirkby, M. Modelling the interactions between soil surface properties and water erosion. CATENA 2002, 46, 89–102. [Google Scholar] [CrossRef]
- Römkens, M.; Helming, K.; Prasad, S. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. CATENA 2002, 46, 103–123. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; Neill, P.E.O.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- WMO. ECV Products and Requirements for Soil Moisture; World Meteorological Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Lavoie, M.; Paré, D.; Fenton, N.; Groot, A.; Taylor, K. Paludification and management of forested peatlands in Canada: A literature review. Environ. Rev. 2005, 13, 21–50. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Garwood, G.; Riordan, K.; Cella, B.; Alden, S.; Kwart, M.; Murphy, K. Improving the prediction of wildfire potential in boreal Alaska with satellite imaging radar. Polar Rec. 2007, 43, 321–330. [Google Scholar] [CrossRef]
- Kurum, M.; O’Neill, P.E.; Lang, R.H.; Joseph, A.T.; Cosh, M.H.; Jackson, T.J. Effective tree scattering and opacity at L-band. Remote Sens. Environ. 2012, 118, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Colliander, A.; Cosh, M.H.; Kelly, V.R.; Kraatz, S.; Bourgeau-Chavez, L.; Siqueira, P.; Roy, A.; Konings, A.G.; Holtzman, N.; Misra, S.; et al. SMAP Detects Soil Moisture Under Temperate Forest Canopies. Geophys. Res. Lett. 2020, 47, e2020GL089697. [Google Scholar] [CrossRef]
- Colliander, A.; Njoku, E.G.; Huang, H.; Tsang, L. Soil Moisture Retrieval Using full Wave Simulations of 3-D Maxwell Equations for Compensating Vegetation Effects. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1418–1421. [Google Scholar]
- Colliander, A.; Cosh, M.H.; Berg, A.; Misra, S.; Thomas, J.; Bourgeau-Chavez, L.; Kelly, V.; Kraatz, S.; Siqueira, P.; Roy, A.; et al. Development of SMAP Retrievals for Forested Regions: SMAPVEX19-22 and SMAPVEX22-Boreal. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4228–4231. [Google Scholar]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Colliander, A.; Chen, F.; Crow, W.; Jackson, T.J.; Berg, A.; Bosch, D.D.; Caldwell, T.; et al. The SMAP mission combined active-passive soil moisture product at 9 km and 3 km spatial resolutions. Remote Sens. Environ. 2018, 211, 204–217. [Google Scholar] [CrossRef]
- Ferrazzoli, P.; Guerriero, L. Radar sensitivity to tree geometry and woody volume: A model analysis. IEEE Trans. Geosci. Remote Sens. 1995, 33, 360–371. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Mikhela, P.J.; Hallikainen, M.T.; Ikonen, J. Seasonal dynamics of C-band backscatter of boreal forests with applications to biomass and soil moisture estimation. IEEE Trans. Geosci. Remote Sens. 1996, 34, 758–770. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.; Leblon, B.; Charbonneau, F.; Buckley, J.R. Assessment of polarimetric SAR data for discrimination between wet versus dry soil moisture conditions. Int. J. Remote Sens. 2013, 34, 5709–5730. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.; Leblon, B.; Charbonneau, F.; Buckley, J. Evaluation of polarimetric Radarsat-2 SAR data for development of soil moisture retrieval algorithms over a chronosequence of black spruce boreal forests. Remote Sens. Environ. 2013, 132, 71–85. [Google Scholar] [CrossRef]
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.-C.; Bizzarri, B.; Wigneron, J.-P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol. Res. 2007, 38, 1–20. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Hajnsek, I.; Sauer, S.; Papathanassiou, K.P.; Bronstert, A. Soil moisture retrieval under forest using polarimetric decomposition techniques at P-band. In Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 709–712. [Google Scholar]
- Kurum, M.; Kim, S.B.; Akbar, R.; Cosh, M.H. Surface Soil Moisture Retrievals Under Forest Canopy for L-Band SAR Observations Across a Wide Range of Incidence Angles by Inverting a Physical Scattering Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1741–1753. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett. 2009, 36, L23401. [Google Scholar] [CrossRef]
- Pulliainen, J.; Hari, P.; Hallikainen, M.; Patrikainen, N.; Peramaki, M.; Kolari, P. Monitoring of soil moisture and vegetation water content variations in boreal forest from C-band SAR data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 1013–1016. [Google Scholar]
- Abbott, K.N.; Leblon, B.; Staples, G.C.; Maclean, D.A.; Alexander, M.E. Fire danger monitoring using RADARSAT-1 over northern boreal forests. Int. J. Remote Sens. 2007, 28, 1317–1338. [Google Scholar] [CrossRef]
- Tabatabaeenejad, A.; Burgin, M.; Moghaddam, M. Potential of L-Band Radar for Retrieval of Canopy and Subcanopy Parameters of Boreal Forests. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2150–2160. [Google Scholar] [CrossRef]
- Touzi, R.; Goze, S.; Toan, T.L.; Lopes, A.; Mougin, E. Polarimetric discriminators for SAR images. IEEE Trans. Geosci. Remote Sens. 1992, 30, 973–980. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Touzi, R.; Deschamps, A.; Rother, G. Wetland characterization using polarimetric RADARSAT-2 capability. Can. J. Remote Sens. 2007, 33, S56–S67. [Google Scholar] [CrossRef]
- van Zyl, J.J.; Arii, M.; Kim, Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3452–3459. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging from Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Moghaddam, M.; Saatchi, S.; Cuenca, R. Estimating subcanopy soil moisture with radar. J. Geophys. Res. 2000, 105, 14899–14912. [Google Scholar] [CrossRef] [Green Version]
- Fung, A.K. Microwave Scattering and Emission Models and Their Applications; Artech House Signal Processing Library: Norwood, MA, USA, 1994. [Google Scholar]
- Harrell, P.A.; Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F.; Christensen, N.L.J.R.S.o.E. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sens. Environ. 1995, 54, 247–260. [Google Scholar] [CrossRef]
- Truong-Loï, M.; Saatchi, S.; Jaruwatanadilok, S. Soil Moisture Estimation Under Tropical Forests Using UHF Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1718–1727. [Google Scholar] [CrossRef]
- Moghaddam, M.; Saatchi, S. Analysis of scattering mechanisms in SAR imagery over boreal forest: Results from BOREAS ‘93. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1290–1296. [Google Scholar] [CrossRef]
- Magagi, R.; Berg, A.A.; Goita, K.; Belair, S.; Jackson, T.J.; Toth, B.; Walker, A.; McNairn, H.; Neill, P.E.O.; Moghaddam, M.; et al. Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10): Overview and Preliminary Results. IEEE Trans. Geosci. Remote Sens. 2013, 51, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Said, S.; Kothyari, U.C.; Arora, M.K. Vegetation effects on soil moisture estimation from ERS-2 SAR images. Hydrol. Sci. J. 2012, 57, 517–534. [Google Scholar] [CrossRef]
- Hajnsek, I.; Jagdhuber, T.; Schon, H.; Papathanassiou, K.P. Potential of estimating soil moisture under vegetation cover by means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Cresson, R.; Pottier, E.; Aubert, M.; Zribi, M.; Jacome, A.; Benabdallah, S. A potential use for the C-band polarimetric SAR parameters to characterize the soil surface over bare agriculture fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3844–3858. [Google Scholar] [CrossRef]
- Baghdadi, N.; Dubois-Fernandez, P.; Dupuis, X.; Zribi, M. Sensitivity of Main Polarimetric Parameters of Multifrequency Polarimetric SAR Data to Soil Moisture and Surface Roughness Over Bare Agricultural Soils. IEEE Geosci. Remote Sens. Lett. 2013, 10, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Jagdhuber, T.; Hajnsek, I.; Bronstert, A.; Papathanassiou, K.P. Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2201–2215. [Google Scholar] [CrossRef]
- Wang, H.; Magagi, R.; Goita, K. Comparison of different polarimetric decompositions for soil moisture retrieval over vegetation covered agricultural area. Remote Sens. Environ. 2017, 199, 120–136. [Google Scholar] [CrossRef]
- Toan, T.L.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Borgeaud, M.; Noll, J. Analysis of theoretical surface scattering models for polarimetric microwave remote sensing of bare soils. Int. J. Remote Sens. 1994, 15, 2931–2942. [Google Scholar] [CrossRef]
- Skriver, H.; Svendsen, M.T.; Thomsen, A.G. Multitemporal C- and L-band polarimetric signatures of crops. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2413–2429. [Google Scholar] [CrossRef]
- McNairn, H.; Ellis, J.; Sanden, V.D.; Hirose, T.; Brown, R.J. Providing crop information using RADARSAT-1 and satellite optical imagery. Int. J. Remote Sens. 2002, 23, 851–870. [Google Scholar] [CrossRef]
- Adams, J.R.; Bergand, A.A.; McNairn, H.; Merzouki, A. Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields. Can. J. Remote Sens. 2013, 39, 1–16. [Google Scholar] [CrossRef]
- Mattia, F.; Le Toan, T.; Souyrb, J.; De Carolis, G.; Floury, N.; Posa, F.; Pasquariello, G. The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966. [Google Scholar] [CrossRef]
- Wang, H.; Magagi, R.; Goita, K.; Jagdhuber, T.; Hajnsek, I. Evaluation of simplified polarimetric decomposition for soil moisture retrieval over vegetated agricultural fields. Remote Sens. 2016, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Hajnsek, I.; Pottier, E.; Cloude, S.R. Inversion of surface parameters from polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 727–744. [Google Scholar] [CrossRef]
- Allain, S.; Ferro-Famil, L.; Pottier, E.; Hajnsek, I. Extraction of surface parameters from multi-frequency and polarimetric SAR data. In Proceedings of the IEEE International Geosicence and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 426–428. [Google Scholar]
- Gonçalves, F.G.; Santos, J.R.; Treuhaft, R.N. Stem volume of tropical forests from polarimetric radar. Int. J. Remote Sens. 2011, 32, 503–522. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Hajnsek, I.; Papathanassiou, K.P. An iterative generalized hybrid decomposition for soil moisture retrieval under vegetation cover using fully polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3911–3922. [Google Scholar] [CrossRef]
- McNairn, H.; Jackson, T.J.; Wiseman, G.; Belair, S.; Berg, A.; Bullock, P.; Colliander, A.; Cosh, M.H.; Kim, S.-B.; Magagi, R.; et al. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2784–2801. [Google Scholar] [CrossRef]
- Lambert, M.-C.; Ung, C.-H.; Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- Lee, J.; Ainsworth, T.L.; Kelly, J.P.; Lopez-Martinez, C. Evaluation and Bias Removal of Multilook Effect on Entropy/Alpha/Anisotropy in Polarimetric SAR Decomposition. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3039–3052. [Google Scholar] [CrossRef]
- López-Martínez, C.; Alonso-González, A.; Fàbregas, X. Perturbation Analysis of Eigenvector-Based Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2081–2095. [Google Scholar] [CrossRef]
- Baronti, S.; Del Frate, F.; Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G. SAR polarimetric features of agricultural areas. Int. J. Remote Sens. 1995, 16, 2639–2656. [Google Scholar] [CrossRef]
- Wang, Y.; Day, J.L.; Davis, F.W. Sensitivity of Modeled C- and L-Band Radar Backscatter to Ground Surface Parameters in Loblolly Pine Forest. Remote Sens. Environ. 1998, 66, 331–342. [Google Scholar] [CrossRef]
- Cable, J.W.; Kovacs, J.M.; Shang, J.; Jiao, X. Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada. Remote Sens. 2014, 6, 2372–2392. [Google Scholar] [CrossRef]
Backscattering Coefficients | Selected Polarimetric Parameters | ||
---|---|---|---|
Backscattering coefficients (dB) in linear polarizations HH, VV, and HV | Phase differences between two channels HH-VV, HH-HV, and VV-HV | ||
Backscattering coefficients (dB) in circular polarizations RR, LL, and RL | Correlation coefficients between two channels HH-VV, HH-HV, and VV-HV | ||
PH | Pedestal height | ||
H, A, α | Entropy, Anisotropy, alpha | ||
Ps, Pd | Surface and volume scattering powers (dB) |
Forest Site | UAVSAR | RADARSAT-2 | ||
---|---|---|---|---|
RMS (cm) | Correlation Length (cm) | RMS (cm) | Correlation Length (cm) | |
F1 | 0.93 | 18.75 | 1.05 | 15.5 |
F2 | 1.63 | 22.75 | 1.04 | 10.5 |
F3 | 1.46 | 17 | 1.61 | 14 |
F5 | 0.85 | 13 | 0.77 | 15.5 |
F1 | F2 | F3 | F5 | |
---|---|---|---|---|
Forest type | The majority of species are Trembling Aspen | |||
DHP (m) | 0.25 | 0.21 | 0.28 | 0.15 |
Tree VWC (kg/m2) | 15.39 | 25.63 | 7.34 | 14.10 |
Trunk density (nb/m2) | 0.14 | 0.25 | 0.43 | 0.54 |
Floor fractional cover (%) | Mainly grass (44) | Mixed (herbs, shrub dead wood, and litter) (49) | Grass and litter (69.5) | Grass (67) |
Floor cover depth (m) | 0.04 | 1.13 | 1.15 | 0.71 |
Biomass (kg/m2) | 34.12 | 39.69 | 138.39 | 37.7 |
DOY 2012 | Incidence Angle | DOY 2012 | Incidence Angle |
---|---|---|---|
169 | 30°, 40° | 187 | 30°, 40° |
171 | 30°, 40° | 190 | 30°, 40° |
174 | 40° | 192 | 30°, 40° |
175 | 30°, 40° | 195 | 30°, 40° |
177 | 30°, 40° | 196 | 40° |
179 | 30°, 40° | 199 | 30°, 40° |
181 | 30°, 40° |
DOY 2012 | Flight Direction | Beam Mode | Incidence Angle (°) |
---|---|---|---|
164 | D | FQ8W | 26.1–29.4 |
165 | A | FQ10W | 28.4–31.6 |
172 | A | FQ6W | 23.7–27.2 |
179 | A | FQ2W | 19.0–22.7 |
188 | D | FQ8W | 26.1–29.4 |
189 | A | FQ10W | 28.4–31.6 |
196 | A | FQ6W | 23.7–27.2 |
F1 | F2 | F3 | F5 | |
---|---|---|---|---|
L-band images | 597 | 596 | 511 | 715 |
C-band images | 359 | 357 | 306 | 431 |
F1 | F2 | F3 | F5 | |
---|---|---|---|---|
σ0HH_30° | 0.60 * | 0.50 | 0.62 * | 0.82 * |
σ0VV_30° | 0.78 * | 0.77 * | 0.77 * | 0.96 * |
σ0HV_30° | 0.80 * | 0.65 * | 0.85 * | 0.94 * |
σ0RR_30° | 0.64 * | 0.56 | 0.66 * | 0.84 * |
σ0LL_30° | 0.68 * | 0.64 * | 0.81 * | 0.88 * |
σ0RL_30° | 0.69 * | 0.66 * | 0.70 * | 0.92 * |
F1 | F2 | F3 | |
---|---|---|---|
σ0HH | 0.74 | 0.55 | 0.30 |
σ0VV | 0.56 | 0.58 | 0.30 |
σ0HV | 0.31 | 0.01 | 0.69 |
σ0RR | 0.31 | 0.76 | 0.84 |
σ0LL | 0.53 | 0.21 | 0.74 |
σ0RL | 0.63 | 0.62 | 0.16 |
F1 | F2 | F3 | F5 | |
---|---|---|---|---|
Ps_L_30° | 0.59 * | 0.55 | 0.46 | 0.84 * |
Pd_L_30° | 0.60 * | 0.61 * | 0.57 | 0.82 * |
Ps_C | 0.65 | 0.74 | 0.56 | |
Pd_C | 0.83 * | 0.88 * | 0.95 * |
F1 | F2 | F3 | F5 | ||
---|---|---|---|---|---|
L-band | Pedestal Height | 0.31 | 0.11 | 0.32 | 0.44 |
0.56 | 0.61 * | 0.57 | 0.02 | ||
0.65 * | 0.38 | 0.03 | 0.53 | ||
0.39 | 0.28 | 0.40 | 0.06 | ||
0.29 | 0.33 | 0.81 * | 0.30 | ||
0.03 | 0.46 | 0.25 | 0.06 | ||
0.26 | 0.33 | 0.60 * | 0.47 | ||
Entropy | 0.35 | 0.14 | 0.29 | 0.48 | |
Alpha | 0.24 | 0.16 | 0.55 | 0.07 | |
Anisotropy | 0.12 | 0.12 | 0.38 | 0.27 | |
C-band | Pedestal Height | 0.53 | 0.65 | 0.14 | |
0.07 | 0.73 | 0.16 | |||
0.15 | 0.33 | 0.15 | |||
0.21 | 0.73 | 0.58 | |||
0.17 | 0.08 | 0.96 * | |||
0.85 * | 0.06 | 0.00 | |||
0.90 * | 0.03 | 0.90 * | |||
Entropy | 0.39 | 0.69 | 0.14 | ||
Alpha | 0.37 | 0.71 | 0.17 | ||
Anisotropy | 0.68 | 0.01 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magagi, R.; Jammali, S.; Goïta, K.; Wang, H.; Colliander, A. Potential of L- and C- Bands Polarimetric SAR Data for Monitoring Soil Moisture over Forested Sites. Remote Sens. 2022, 14, 5317. https://doi.org/10.3390/rs14215317
Magagi R, Jammali S, Goïta K, Wang H, Colliander A. Potential of L- and C- Bands Polarimetric SAR Data for Monitoring Soil Moisture over Forested Sites. Remote Sensing. 2022; 14(21):5317. https://doi.org/10.3390/rs14215317
Chicago/Turabian StyleMagagi, Ramata, Safa Jammali, Kalifa Goïta, Hongquan Wang, and Andreas Colliander. 2022. "Potential of L- and C- Bands Polarimetric SAR Data for Monitoring Soil Moisture over Forested Sites" Remote Sensing 14, no. 21: 5317. https://doi.org/10.3390/rs14215317
APA StyleMagagi, R., Jammali, S., Goïta, K., Wang, H., & Colliander, A. (2022). Potential of L- and C- Bands Polarimetric SAR Data for Monitoring Soil Moisture over Forested Sites. Remote Sensing, 14(21), 5317. https://doi.org/10.3390/rs14215317