Evaluation of the Landsat-8 Albedo Product across the Circumpolar Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Operational Blue-Sky Albedo
2.2. Ground-Based Tower Albedo
3. Results
3.1. Overview of Landsat Circumpolar Albedo
3.2. Accuracy of Circumpolar Full-Expression Blue-Sky Albedo
3.3. Effects of AOD Data Sources on Full-Expression Blue-Sky Albedo
3.4. Spatial Details in Landsat Circumpolar Albedo
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickinson, R.E. Land Surface Processes and Climate-Surface Albedos and Energy Balance. In Advances in Geophysics; Saltzman, B., Ed.; Elsevier: New York, NY, USA, 1983; Volume 25, pp. 305–353. ISBN 0065–2687. [Google Scholar]
- Betts, A.K.; Ball, J.H. Albedo over the Boreal Forest. J. Geophys. Res. Atmos. 1997, 102, 28901–28909. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; O’Brien, D.; Webster, P.J.; Pilewski, P.; Kato, S.; Li, J.L. The Albedo of Earth. Rev. Geophys. 2015, 53, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Post, E.; Alley, R.B.; Christensen, T.R.; Macias-Fauria, M.; Forbes, B.C.; Gooseff, M.N.; Iler, A.; Kerby, J.T.; Laidre, K.L.; Mann, M.E.; et al. The Polar Regions in a 2 °C Warmer World. Sci. Adv. 2019, 5, eaaw9883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Wang, H.; Fu, Q.; Rasch, P.J.; Wang, X. Unraveling Driving Forces Explaining Significant Reduction in Satellite-Inferred Arctic Surface Albedo since the 1980s. Proc. Natl. Acad. Sci. USA 2019, 116, 23947–23953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudryk, L.E.; Chereque, A.; Brown, R.; Derksen, C.; Luojus, K.; Decharme, B. Arctic Report Card 2020: Terrestrial Snow Cover; Thoman, R.L., Richter-Menge, J., Druckenmiller, M.L., Eds.; 2020; pp. 28–34. Available online: https://repository.library.noaa.gov/view/noaa/27902 (accessed on 1 September 2022).
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s Rapidly Shrinking Sea Ice Cover: A Research Synthesis. Clim. Change 2012, 110, 1005–1027. [Google Scholar] [CrossRef] [Green Version]
- Perovich, D.; Meier, W.; Tschudi, M.; Hendricks, S.; Petty, A.A.; Divine, D.; Farrell, S.; Gerland, S.; Haas, C.; Kaleschke, L.; et al. Arctic Report Card 2020: Sea Ice; Thoman, R.L., Richter-Menge, J., Druckenmiller, M.L., Eds.; 2020; pp. 44–53. Available online: https://repository.library.noaa.gov/view/noaa/27904 (accessed on 1 September 2022).
- Webb, E.E.; Loranty, M.M.; Lichstein, J.W. Surface Water, Vegetation, and Fire as Drivers of the Terrestrial Arctic-Boreal Albedo Feedback. Environ. Res. Lett. 2021, 16, 084046. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote Sensing of Vegetation and Land-Cover Change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Zhou, L.; Wang, T. Change in Snow Phenology and Its Potential Feedback to Temperature in the Northern Hemisphere over the Last Three Decades. Environ. Res. Lett. 2013, 8, 014008. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Yabuki, H.; Ohata, T. Analysis of Satellite and Model Datasets for Variability and Trends in Arctic Snow Extent and Depth, 1948–2006. Polar. Sci. 2012, 6, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Beringer, J.; Chapin III, F.S.; Thompson, C.C.; McGuire, A.D. Surface Energy Exchanges along a Tundra-Forest Transition and Feedbacks to Climate. Agric. For. Meteorol. 2005, 131, 143–161. [Google Scholar] [CrossRef]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.A.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic Vegetation and Associated Feedbacks under Climate Change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Sturm, M.; Racine, C.; Tape, K. Climate Change: Increasing Shrub Abundance in the Arctic. Nature 2001, 411, 546–547. [Google Scholar] [CrossRef] [PubMed]
- Tape, K.; Sturm, M.; Racine, C. The Evidence for Shrub Expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol. 2006, 12, 686–702. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub Expansion in Tundra Ecosystems: Dynamics, Impacts and Research Priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Masek, J.G. The Vegetation Greenness Trend in Canada and US Alaska from 1984–2012 Landsat Data. Remote. Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Bi, J.; Xu, L.; Samanta, A.; Zhu, Z.; Myneni, R. Divergent Arctic-Boreal Vegetation Changes between North America and Eurasia over the Past 30 Years. Remote Sens. 2013, 5, 2093–2112. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L.; Gaglioti, B.v.; et al. Summer Warming Explains Widespread but Not Uniform Greening in the Arctic Tundra Biome. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Burakowski, E.A.; Ollinger, S.V.; Lepine, L.; Schaaf, C.B.; Wang, Z.; Dibb, J.E.; Hollinger, D.Y.; Kim, J.H.; Erb, A.; Martin, M. Spatial Scaling of Reflectance and Surface Albedo over a Mixed-Use, Temperate Forest Landscape during Snow-Covered Periods. Remote Sens. Environ. 2015, 158, 465–477. [Google Scholar] [CrossRef]
- Kuusinen, N.; Kolari, P.; Levula, J.; Porcar-Castell, A.; Stenberg, P.; Berninger, F. Seasonal Variation in Boreal Pine Forest Albedo and Effects of Canopy Snow on Forest Reflectance. Agric. For. Meteorol. 2012, 164, 53–60. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M.; Hinzman, L.D. Atmospheric Science: Disappearing Arctic Lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.L.; Townshend, J.R.G.; Dimiceli, C.M.; Loboda, T.; Sohlberg, R.A. Shrinking Lakes of the Arctic: Spatial Relationships and Trajectory of Change. Geophys. Res. Lett. 2011, 38, L20406. [Google Scholar] [CrossRef] [Green Version]
- Juszak, I.; Iturrate-Garcia, M.; Gastellu-Etchegorry, J.P.; Schaepman, M.E.; Maximov, T.C.; Schaepman-Strub, G. Drivers of Shortwave Radiation Fluxes in Arctic Tundra across Scales. Remote Sens. Environ. 2017, 193, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF. Remote Sens. Environ. 2011, 115, 2204–2216. [Google Scholar] [CrossRef]
- Wang, Z.; Erb, A.M.; Schaaf, C.B.; Sun, Q.; Liu, Y.; Yang, Y.; Shuai, Y.; Casey, K.A.; Román, M.O. Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data. Remote Sens. Environ. 2016, 185, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Erb, A.; Sun, Q.; Liu, Y.; Shuai, Y.; Wang, Z.; Boucher, P.; Schaaf, C. Preliminary Assessment of 20-m Surface Albedo Retrievals from Sentinel-2A Surface Reflectance and MODIS/VIIRS Surface Anisotropy Measures. Remote Sens. Environ. 2018, 217, 352–365. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Kim, J.H.; Erb, A.M.; Gao, F.; Román, M.O.; Yang, Y.; Petroy, S.; Taylor, J.R.; et al. Monitoring Land Surface Albedo and Vegetation Dynamics Using High Spatial and Temporal Resolution Synthetic Time Series from Landsat and the MODIS BRDF/NBAR/Albedo Product. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 104–117. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.; et al. Schaaf et al 2002 First Operational BRDF, Albedo Nadir Reflectance Products from MODIS.Pdf. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Shuai, Y.; Román, M.O. Capturing Rapid Land Surface Dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) Products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance Quantities in Optical Remote Sensing-Definitions and Case Studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Lewis, P.; Barnsley, M. Influence of the Sky Radiance Distribution on Various Formulations of the Earth Surface Albedo. In Proceedings of the Conference on Physical Measurements and Signatures in Remote Sensing, Val d’Isere, France, 17–21 January 1994; pp. 707–715. [Google Scholar]
- Román, M.O.; Schaaf, C.B.; Lewis, P.; Gao, F.; Anderson, G.P.; Privette, J.L.; Strahler, A.H.; Woodcock, C.E.; Barnsley, M. Assessing the Coupling between Surface Albedo Derived from MODIS and the Fraction of Diffuse Skylight over Spatially-Characterized Landscapes. Remote Sens. Environ. 2010, 114, 738–760. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef] [Green Version]
- Pinty, B.; Lavergne, T.; Dickinson, R.E.; Widlowski, J.L.; Gobron, N.; Verstraete, M.M. Simplifying the Interaction of Land Surfaces with Radiation for Relating Remote Sensing Products to Climate Models. J. Geophys. Res. Atmos. 2006, 111, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; King, M.D.; Meyer, K.G.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Ridgway, B. MODIS Atmosphere L3 Monthly Product; NASA MODIS Adaptive Processing System, Goddard Space Flight Center: Greenbelt, MD, USA, 2017. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Slutsker, T.I.E.I.; Tar, D.; Buis, J.P.; Setxerj, I.I.A.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; Lavenu, F.; Vemte, E.; et al. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-Screening and Quality Control Algorithms for the AERONET Database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Kaskaoutis, D.; Kambezidis, H.D.; Hatzianastassiou, N.; Kosmopoulos, P.G.; Badarinath, K. v Aerosol Climatology: Dependence of the Angstrom Exponent on Wavelength over Four AERONET Sites. Atmos. Chem. Phys. Discuss. 2007, 7, 7347–7397. [Google Scholar] [CrossRef]
- Alam, K.; Us Sahar, N.; Iqbal, Y. Aerosol Characteristics and Radiative Forcing during Pre-Monsoon and Post-Monsoon Seasons in an Urban Environment. Aerosol. Air. Qual. Res. 2014, 14, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Singh, R.P. Comparison of MISR-MODIS Aerosol Optical Depth over the Indo-Gangetic Basin during the Winter and Summer Seasons (2000–2005). Remote Sens. Environ. 2007, 107, 109–119. [Google Scholar] [CrossRef]
- Hamilton, M.P.; Graham, E.A.; Rundel, P.W.; Allen, M.F.; Kaiser, W.; Hansen, M.H.; Estrin, D.L. New Approaches in Embedded Networked Sensing for Terrestrial Ecological Observatories. Environ. Eng. Sci. 2007, 24, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Kampe, T.U. NEON: The First Continental-Scale Ecological Observatory with Airborne Remote Sensing of Vegetation Canopy Biochemistry and Structure. J. Appl. Remote Sens. 2010, 4, 043510. [Google Scholar] [CrossRef] [Green Version]
- Schimel, D.; Hargrove, W.; Hoffman, F.; MacMahon, J. NEON: A Hierarchically Designed National Ecological Network. Front. Ecol. Environ. 2007, 5, 59. [Google Scholar] [CrossRef]
- NEON Provisional Data Downloaded from Ational Ecological Observatory Network. Battelle, Boulder, CO, USA. 2018. Available online: http://Data.Neonscience (accessed on 1 August 2018).
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and Data Description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Manninen, T.; Roujean, J.L.; Hautecoeur, O.; Riihelä, A.; Lahtinen, P.; Jääskeläinen, E.; Siljamo, N.; Anttila, K.; Sukuvaara, T.; Korhonen, L. Airborne Measurements of Surface Albedo and Leaf Area Index of Snow-Covered Boreal Forest. J. Geophys. Res. Atmos. 2022, 127, e2021JD035376. [Google Scholar] [CrossRef]
- Román, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L.; et al. The MODIS (Collection V005) BRDF/Albedo Product: Assessment of Spatial Representativeness over Forested Landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef] [Green Version]
- Henderson-Sellers, A.; Wilson, M.F. Surface Albedo Data for Climatic Modeling. Rev. Geophys. 1983, 21, 1743–1778. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Román, M.O.; Rocha, A.V.; Woodcock, C.E.; Shuai, Y. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bartsch, A.; Widhalm, B.; Pointner, G.; Ermokhina, K.; Leibman, M.; Heim, B. Landcover Derived from Sentinel-1 and Sentinel-2 Satellite Data (2015–2018) for Subarctic and Arctic Environments; Zentralanstalt für Meteorologie und Geodynamik: Wien, Austria, 2019. [Google Scholar]
- Sturm, M.; Schimel, J.; Michaelson, G.; Welker, J.M.; Oberbauer, S.F.; Liston, G.E.; Fahnestock, J.; Romanovsky, V.E. Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland. Bioscience 2005, 55, 17–26. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Bewley, D.S.; Essery, R.L.H.; Hedstrom, N.R.; Link, T.; Granger, R.J.; Sicart, J.E.; Ellis, C.R.; Janowicz, J.R. Shrub Tundra Snowmelt. Hydrol Process 2006, 20, 923–941. [Google Scholar] [CrossRef]
- Bonfils, C.J.W.; Phillips, T.J.; Lawrence, D.M.; Cameron-Smith, P.; Riley, W.J.; Subin, Z.M. On the Influence of Shrub Height and Expansion on Northern High Latitude Climate. Environ. Res. Lett. 2012, 7, 015503. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering Open Science and Applications through Continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
Site ID | Network | Country | Lat/ Long | Tower Height (m) | Instrument Footprint (m) | Landcover/Domain | Representativeness Assessment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Snow Free | Snow Present | ||||||||||||
Image Date | Sill2.0 | R @ 2 km | Image Date | Sill2.0 | R @ 2 km | ||||||||
Abby Road | ABBY | NEON | USA | 45.762/ −122.330 | 18.55 | 235.59 | Evergreen Forest, Grassland/Herbaceous, Shrub/Shrub | 05 Aug 2019 | 5.93 × 10−4 | R | 24 Oct 2019 | 5.36 × 10−4 | R |
Utqiaġvik | BARR | NEON | USA | 71.282/ −156.619 | 8.92 | 113.28 | Emergent Herbaceous Wetlands | 12 Jul 2017 | 7.91 × 10−4 | R | 22 Jun 2018 | 1.02 × 10−2 | NR |
Bartlett Exp Forest | BART | NEON | USA | 44.064/ −71.287 | 35.67 | 453.01 | Deciduous/Evergreen/Mixed Forest | 19 Jul 2018 | 3.33 × 10−4 | R | 26 Mar 2017 | 4.66 × 10−3 | NR |
Caribou-Poker Creeks | BONA | NEON | USA | 65.154/ −147.503 | 19.37 | 246.00 | Deciduous/Evergreen/Mixed Forest | 26 Jun 2019 | 6.50 × 10−4 | NR | 12 Mar 2018 | 5.72 × 10−2 | NR |
Cabauw | CAB | BSRN | NL | 51.971/ 4.927 | 2 | 25.40 | Grasslands | 01 May 2016 | 1.47 × 10−3 | NR | NI | ||
Dakota Coteau | DCFS | NEON | USA | 47.162/ −99.107 | 8.59 | 109.09 | Grassland/Herbaceous | 27 Jul 2019 | 1.09 × 10−3 | NR | 16 Jan 2019 | 1.23 × 10−2 | NR |
Delta Junction | DEJU | NEON | USA | 63.881/ −145.751 | 22.33 | 283.59 | Evergreen Forest, Shrub/Shrub, Woody Wetlands | 09 Aug 2017 | 2.34 × 10−4 | R | NF | ||
Fort Peck | FPK | SURFRAD | USA | 48.308/ −105.102 | 10 | 127.00 | Grasslands | NF | 01 Feb 2018 | 1.20 × 10−2 | NR | ||
Harvard Forest | HARV | NEON | USA | 42.537/ −72.173 | 39.1 | 496.57 | Deciduous/Evergreen, Mixed Forest, Woody Wetlands | 05 Aug 2016 | 3.83 × 10−4 | R | 17 Mar 2017 | 1.05 × 10−2 | NR |
Healy | HEAL | NEON | USA | 63.876/ −149.213 | 8.81 | 111.89 | Dwarf Scrub, Evergreen Forest, Shrub/Shrub | 10 Jul 2019 | Not Fit | NR | NF | ||
Niwot Ridge Mountain | NIWO | NEON | USA | 40.054/ −105.582 | 8.41 | 106.81 | Evergreen Forest, Grassland/Herbaceous | 17 Aug 2019 | 4.94 × 10−4 | R | 05 Apr 2017 | 2.28 × 10−2 | NR |
Northern Great Plains | NOGP | NEON | USA | 46.77/ −100.915 | 8.39 | 106.55 | Grassland/Herbaceous | 25 Jul 2019 | 2.35 × 10−4 | R | 14 Jan 2019 | 2.36 × 10−2 | NR |
Ny-Alesund Spitsbergen | NYA | BSRN | SJ | 78.925/ 11.93 | 2 | 25.40 | Tundra Vegetation | NI | 01 Apr 2018 | 2.09 × 10−1 | NR | ||
Penn State | PSU | SURFRAD | USA | 40.72/ −77.931 | 10 | 127.00 | Cultivated/Mixed Forest | 23 Jul 2015 | 6.38 × 10−4 | NR | 13 Feb 2015 | 2.98 × 10−2 | NR |
Rutland VT | RUT | SURFRAD | USA | 43.637/ −72.975 | 10 | 127.00 | Grasslands | 06 May 2015 | 7.16 × 10−4 | NR | 12 Mar 2015 | 1.95 × 10−2 | NR |
Sioux Falls SD | SXF | SURFRAD | USA | 43.734/ −96.623 | 10 | 127.00 | Grassland | 05 Aug 2016 | 1.70 × 10−3 | NR | 31 Jan 2018 | 7.62 × 10−3 | NR |
Steigerwaldt Land Services | STEI | NEON | USA | 45.509/ −89.586 | 5.98 | 75.95 | Woody Wetlands | 10 Jul 2019 | 2.61 × 10−4 | R | 17Mar 2018 | 1.32 × 10−2 | NR |
North Sterling | STER | NEON | USA | 40.462/ −103.029 | 8.42 | 106.93 | Cultivated | 21 Feb 2018 | 7.10 × 10−3 | R | 04 Jan 2018 | 3.68 × 10−4 | NR |
Summit Station | SUM | ESRL | GL | −38.4596/72.5766 | 1.7 | 21.93 | Snow/Ice | NI | 17 Jun 2016 | 7.44 × 10−5 | R | ||
Tiksi | TIK | BSRN | RU | 71.586/ 128.919 | 2 | 25.40 | Tundra Vegetation | NI | 30 Apr 2016 | 1.25 × 10−3 | NR | ||
Toolik | TOOL | NEON | USA | 68.661/ −149.37 | 8.96 | 113.79 | Dwarf Scrub, Shrub/Shrub | 08 Jul 2019 | 4.51 × 10−5 | NR | NF | ||
Toravere | TOR | BSRN | EE | 58.254/ 26.462 | 2 | 25.40 | Deciduous/Evergreen/Mixed Forest, Woody Wetlands | 23 Aug 2018 | 6.21 × 10−4 | R | NF | ||
Treehaven | TREE | NEON | USA | 45.494/ −89.586 | 35.9 | 455.93 | Deciduous/Mixed Forest, Woody Wetlands | 30 Jul 2018 | 5.30 × 10−4 | R | 17 Mar 2018 | 1.29 × 10−2 | NR |
Notre Dame ERC | UNDE | NEON | USA | 46.234/ −89.537 | 38.74 | 492.00 | Emergent Herbaceous Wetlands, Grassland/Herbaceous | 30 Jul 2018 | 1.52 × 10−3 | NR | 25 Apr 2018 | 4.04 × 10−3 | NR |
Wind River Experimental Forest | WREF | NEON | USA | 45.82/ −121.952 | 74.2 | 942.34 | Evergreen Forest | 29 Jul 2019 | 5.12 × 10−4 | R | 30 Mar 2019 | 3.23 × 10−3 | NR |
Yellowstone Northern Range | YELL | NEON | USA | 44.953/ −110.539 | 18.03 | 228.98 | Evergreen Forest, Grassland/Herbaceous, Shrub/Shrub | NF | 18 Feb 2019 | 6.70 × 10−2 | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erb, A.M.; Li, Z.; Sun, Q.; Paynter, I.; Wang, Z.; Schaaf, C. Evaluation of the Landsat-8 Albedo Product across the Circumpolar Domain. Remote Sens. 2022, 14, 5320. https://doi.org/10.3390/rs14215320
Erb AM, Li Z, Sun Q, Paynter I, Wang Z, Schaaf C. Evaluation of the Landsat-8 Albedo Product across the Circumpolar Domain. Remote Sensing. 2022; 14(21):5320. https://doi.org/10.3390/rs14215320
Chicago/Turabian StyleErb, Angela M., Zhan Li, Qingsong Sun, Ian Paynter, Zhuosen Wang, and Crystal Schaaf. 2022. "Evaluation of the Landsat-8 Albedo Product across the Circumpolar Domain" Remote Sensing 14, no. 21: 5320. https://doi.org/10.3390/rs14215320
APA StyleErb, A. M., Li, Z., Sun, Q., Paynter, I., Wang, Z., & Schaaf, C. (2022). Evaluation of the Landsat-8 Albedo Product across the Circumpolar Domain. Remote Sensing, 14(21), 5320. https://doi.org/10.3390/rs14215320