A New Seismic Inversion Scheme Using Fluid Dispersion Attribute for Direct Gas Identification in Tight Sandstone Reservoirs
Abstract
:1. Introduction
2. Methodology
2.1. Decoupled Fluid-Solid AVO Linearized Approximation
2.2. A New Fluid Dispersion Attribute Inversion Scheme Based on Decoupled Fluid-Solid AVO
2.3. Inverse Spectral Decomposition Technique
2.4. Rock Physics Model for Gas-Bearing Tight Sandstones
3. Theoretical Model Analyses
3.1. Rock Physics Modeling for Gas-Bearing Tight Sandstone
3.2. Synthetic Data Test Using a Realistic Model
4. Field Data Applications
4.1. Dataset
4.2. Calibration of DKf Using Actual Seismic Data near the Gas-Producing Well
4.3. Applications to Three-Dimensional (3D) Seismic Data
5. Discussion
5.1. Advantages of the Proposed Fluid Dispersion Attribute
5.2. Rock Physics Modeling of Gas-Bearing Tight Sandstones
5.3. Seismic Modeling for Inelastic Tight Gas Sandstone
5.4. Spectral Decomposition Techniques Used in the Dispersion Attribute Inversion
6. Conclusions
- The fluid dispersion attribute (DKf) obtained by incorporating the decoupled fluid-solid AVO equation into the frequency-dependent inversion scheme provides a preferable gas indicator that improves gas prediction over conventional DP in tight sandstones.
- Numerical analyses and synthetic data tests validated the enhanced sensitivity of DKf to Sg. The response of DKf was of a much higher order of magnitude than DP and showed more distinct anomalies than DP for higher Sg, confirming that DKf represents a superior indicator for gas prediction identification in tight sandstones.
- Field data applications indicated that the results of DKf led to more reliable estimates of potential gas-bearing areas. The distribution of gas zones estimated by DKf were more meaningful geologically as revealed by the reservoir properties from gas-producing boreholes, supporting the use of DKf for improved gas identification in tight sandstones.
- The rock physics modeling and seismic simulation methods proposed offer powerful tools for testing models of the fluid dispersion attribute inversion. The synthetic data computed using the established realistic models provide reliable representations of the seismic signatures of actual tight sandstone reservoirs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Patchy Saturation Theory
Appendix B. Propagator Matrix Method
References
- Li, D.; Wei, J.; Di, B.; Ding, P.; Shuai, D. The effect of fluid saturation on the dynamic shear modulus of tight sandstones. J. Geophys. Eng. 2017, 14, 1072–1086. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, D.; Zhang, M.; Wang, Y.; Liu, L.; Zhang, M. Seismic prediction method of pore fluid in tight gas reservoirs, Ordos Basin, NW China. Petrol. Explor. Develop. 2017, 44, 544–551. [Google Scholar] [CrossRef]
- Liu, J.; Ning, J.; Liu, X.; Liu, C.; Chen, T. An improved scheme of frequency-dependent AVO inversion method and its application for tight gas reservoirs. Geofluids 2019, 2019, 3525818. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Li, J.; Chen, X.; Wang, K.; Wang, B. Fluid discrimination based on frequency-dependent AVO inversion with the elastic parameter sensitivity analysis. Geofluids 2019, 2019, 8750127. [Google Scholar] [CrossRef]
- Jiang, R.; Liu, C.; Zhang, J.; Zeng, Q.; He, P.; Huang, J.; Du, B.; He, W.; Hao, T.; Zhang, J. Quantitative reservoir characterization of tight sandstone using extended elastic impedance. Nat. Resour. Res. 2021, 30, 395–409. [Google Scholar] [CrossRef]
- Xue, Y.; Cao, J.; Wang, D.; Tian, R.; Shu, Y. Detection of gas and water using HHT by analyzing P- and S-wave attenuation in tight sandstone gas reservoirs. J. Appl. Geophys. 2013, 98, 134–143. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, J.; Tang, G.; Zhao, L.; Ma, X.; Wang, S. Pressure and fluid effect on frequency-dependent elastic moduli in fully saturated tight sandstone. J. Geophys. Res. Solid Earth 2017, 122, 8925–8942. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Han, D.; Sun, M.; Huang, Q. Combined effects of permeability and fluid saturation on seismic wave dispersion and attenuation in partially-saturated sandstone. Adv. Geo-Energy Res. 2021, 5, 181–190. [Google Scholar] [CrossRef]
- Jin, H.; Liu, C.; Guo, Z.; Zhang, Y.; Niu, C.; Wang, D.; Ling, Y. Rock physical modeling and seismic dispersion attribute inversion for the characterization of a tight gas sandstone reservoir. Front. Earth Sci. 2021, 9, 641651. [Google Scholar] [CrossRef]
- Chapman, M. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys. Prosp. 2003, 51, 369–379. [Google Scholar] [CrossRef]
- Chapman, M. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics 2009, 74, D97–D103. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Ba, J.; Carcione, J.M. Theory of wave propagation in partially saturated double-porosity rocks: A triple-layer patchy model. Geophys. J. Int. 2016, 205, 22–37. [Google Scholar] [CrossRef]
- Ba, J.; Xu, W.; Fu, L.; Carcione, J.M.; Zhang, L. Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation. J. Geophys. Res. Solid Earth 2017, 122, 1949–1976. [Google Scholar] [CrossRef]
- Sharma, M.D. Propagation of seismic waves in patchy-saturated porous media: Double-porosity representation. Geophys. Prosp. 2019, 67, 2147–2160. [Google Scholar] [CrossRef]
- Wilson, A.; Chapman, M.; Li, X.-Y. Frequency-dependent AVO inversion. In Proceedings of the 2009 SEG Annual Meeting, Houston, TX, USA, 25–30 October 2009; pp. 341–345. [Google Scholar] [CrossRef]
- Smith, G.C.; Gidlow, P.M. Weighted stacking for rock property estimation and detection of gas. Geophys. Prosp. 1987, 35, 993–1014. [Google Scholar] [CrossRef]
- Pang, S.; Liu, C.; Guo, Z.; Liu, X.; Liu, Y. Gas identification of shale reservoirs based on frequency-dependent AVO inversion of seismic data. Chin. J. Geophys. 2018, 61, 4613–4624. [Google Scholar] [CrossRef]
- Huang, G.; Chen, X.; Luo, C.; Chen, Y. Mesoscopic wave-induced fluid flow effect extraction by using frequency-dependent prestack waveform inversion. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6510–6524. [Google Scholar] [CrossRef]
- Liu, W.; Cao, S.; Jin, Z.; Wang, Z.; Chen, Y. A novel hydrocarbon detection approach via high-resolution frequency-dependent AVO inversion based on variational mode decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2007–2024. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, S. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation. Geophysics 2014, 79, R221–R232. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, H.; Dong, Y.; Yang, X.; Wang, C.; Luo, Y. Direct estimation of the fluid properties and brittleness via elastic impedance inversion for predicting sweet spots and the fracturing area in the unconventional reservoir. J. Nat. Gas Sci. Eng. 2017, 45, 415–427. [Google Scholar] [CrossRef]
- Russell, B.H.; Gray, D.; Hampson, D.P. Linearized AVO and poroelasticity. Geophysics 2011, 76, C19–C29. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology, 2nd ed.; University Science Books: Sausalito, CA, USA, 2002. [Google Scholar]
- Han, D.; Batzle, M.L. Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 2004, 69, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Nur, A.; Mavko, G.; Dvorkin, J.; Galmudi, D. Critical porosity: A key to relating physical properties to porosity in rocks. Lead. Edge 1998, 17, 357–362. [Google Scholar] [CrossRef]
- Han, L.; Han, L.; Li, Z. Inverse spectral decomposition with the SPGL1 algorithm. J. Geophys. Eng. 2012, 9, 423–427. [Google Scholar] [CrossRef]
- Guo, Z.; Qin, X.; Zhang, Y.; Niu, C.; Wang, D.; Ling, Y. Numerical investigation of the effect of heterogeneous pore structures on elastic properties of tight gas sandstones. Front. Earth Sci. 2021, 9, 641637. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Carcione, J.M.; Picotti, S. P-Wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties. Geophysics 2006, 71, O1–O8. [Google Scholar] [CrossRef] [Green Version]
- White, J.E. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 1975, 40, 224–232. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, C.; Li, X.; Lan, H. An improved method for the modeling of frequency-dependent amplitude-versus-offset variations. IEEE Geosci. Remote Sens. Lett. 2015, 12, 63–67. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, X. Seismic rock physics characterization of anisotropic shale-a Longmaxi shale case study. J. Geophys. Eng. 2018, 15, 512–526. [Google Scholar] [CrossRef]
- Carcione, J.M. AVO effects of a hydrocarbon source-rock layer. Geophysics 2001, 66, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Pucciarelli, G. Wavelet analysis in volcanology: The case of the Phlegrean Fields. J. Environ. Sci. Eng. A 2017, 6, 300–307. [Google Scholar] [CrossRef]
Properties | Clay | Quartz | Water | Gas |
---|---|---|---|---|
K (GPa) | 21.00 | 36.60 | 2.25 | 0.012 |
μ (GPa) | 7.00 | 45.00 | 0.00 | 0.000 |
ρ (g/cm3) | 2.60 | 2.65 | 1.04 | 0.078 |
η (cP) | - | - | 3.00 | 0.015 |
Well | h (m) | φ | κ (mD) | Sg |
---|---|---|---|---|
Well A | 11.90 | 0.136 | 2.70 | 0.72 |
Well B | 2.80 | 0.131 | 1.77 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Zhao, D.; Liu, C. A New Seismic Inversion Scheme Using Fluid Dispersion Attribute for Direct Gas Identification in Tight Sandstone Reservoirs. Remote Sens. 2022, 14, 5326. https://doi.org/10.3390/rs14215326
Guo Z, Zhao D, Liu C. A New Seismic Inversion Scheme Using Fluid Dispersion Attribute for Direct Gas Identification in Tight Sandstone Reservoirs. Remote Sensing. 2022; 14(21):5326. https://doi.org/10.3390/rs14215326
Chicago/Turabian StyleGuo, Zhiqi, Danyu Zhao, and Cai Liu. 2022. "A New Seismic Inversion Scheme Using Fluid Dispersion Attribute for Direct Gas Identification in Tight Sandstone Reservoirs" Remote Sensing 14, no. 21: 5326. https://doi.org/10.3390/rs14215326
APA StyleGuo, Z., Zhao, D., & Liu, C. (2022). A New Seismic Inversion Scheme Using Fluid Dispersion Attribute for Direct Gas Identification in Tight Sandstone Reservoirs. Remote Sensing, 14(21), 5326. https://doi.org/10.3390/rs14215326