Study of Sea Surface Geophysical Parameter Changes Due to Internal Solitary Waves Using a Sentinel-3 Synthetic Aperture Radar Altimeter
Abstract
:1. Introduction
2. Data
2.1. Data introduction
2.2. Study Area
3. Methods
3.1. Method of Feature Selection
3.2. Geometric Relationship between the SRAL Trajectory and ISW Propagation Direction
4. ISW Characteristics Based on SAR Altimeters
4.1. Variation Characteristics
4.2. SWH Variation Characteristics
4.3. SSHA Variation Characteristics
5. Discussion
5.1. Analysis of Change Characteristics
5.2. Analysis of SWH Change Characteristics
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | Track | ISW Location (E°, N°) | Leading Wave Width (km) | ISW Propagation (°) |
---|---|---|---|---|
20170927 | 3A-331 | 118.424, 8.272 | 2.188 | 31.99 NW |
20180308 | 3A-331 | 118.58, 8.969 | 1.652 | 36.16 NW |
20180404 | 3A-331 | 118.399, 8.162 | 1.679 | 59.23 NW |
20180501 | 3A-331 | 118.485, 8.547 | 2.392 | 59.71 NW |
20180505 | 3A-3 | 119.008, 6.669 | 3.565 | 37.13 NW |
20180628 | 3A-3 | 119.073, 6.964 | 4.931 | 52.15 NW |
20181010 | 3A-331 | 118.51, 8.653 | 2.593 | 48.33 NW |
20181110 | 3A-3 | 119.28, 7.886 | 3.582 | 45.68 NW |
20181211 | 3A-60 | 120.761, 10.311 | 3.117 | 14.38 NW |
20190209 | 3B-3 | 118.91, 8.322 | 3.486 | 23.44 NW |
20190222 | 3A-331 | 118.368, 8.031 | 2.852 | 7.96 NW |
20190226 | 3A-3 | 119.184, 7.459 | 2.567 | 35.46 NW |
20190308 | 3B-3 | 118.968, 8.585 118.687, 7.334 | 2.059 3.531 | 51.53 NW 43.54 NW |
20190325 | 3A-3 | 119.465, 8.709 119.238, 7.699 | 2.969 2.826 | 39.13 NW 43.37 NW |
20190404 | 3B-3 | 118.727, 7.512 | 3.311 | 54.25 NW |
20190421 | 3A-3 | 119.277, 7.873 | 2.013 | 28.84 NW |
20190707 | 3A-331 | 118.444, 8.361 | 2.734 | 28.49 NW |
20190721 | 3B-3 | 118.977, 8.623 | 2.642 | 34.47 NW |
20190817 | 3B-3 | 118.801, 7.838 | 3.486 | 44.98 NW |
20190903 | 3A-3 | 118.988, 6.584 | 1.735 | 33.82 NW |
20190930 | 3A-3 | 119.318, 8.057 | 2.953 | 26.27 NW |
20191220 | 3A-3 | 119.149, 7.302 | 2.396 | 39.85 NW |
20191230 | 3B-3 | 118.659, 7.212 | 3.117 | 40.60 NW |
20200116 | 3A-3 | 119.211, 7.578 | 3.545 | 34.52 NW |
20200126 | 3B-3 | 118.71, 7.435 | 2.056 | 45.77 NW |
20200222 | 3B-3 | 118.743, 7.585 | 2.443 | 50.59 NW |
20200226 | 3B-60 | 119.526, 6.914 | 3.146 | 43.01 NW |
20200310 | 3A-3 | 119.257, 7.783 | 1.421 | 32.45 NW |
20200314 | 3A-60 | 120.292, 8.232 120.05, 7.151 | 3.367 3.592 | 49.34 NW 42.20 NW |
20200320 | 3B-3 | 118.791, 7.799 | 2.944 | 50.92 NW |
20200324 | 3B-60 | 119.558, 7.056 | 3.726 | 46.44 NW |
20200406 | 3A-3 | 119.328, 8.103 | 3.094 | 13.71 NW |
20200526 | 3A-331 | 118.426, 8.285 | 1.518 | 30.26 NW |
20200723 | 3A-3 | 119.026, 6.752 | 2.171 | 54.3 NW |
20200919 | 3A-60 | 120.657, 9.85 | 2.878 | 17.21 NW |
20201118 | 3B-3 | 118.724, 7.494 | 3.089 | 27.94 NW |
20201205 | 3A-3 | 119.239, 7.703 | 2.102 | 34.64 NW |
20210211 | 3B-60 | 119.319, 5.986 | 2.465 | 51.76 NW |
20210319 | 3A-331 | 118.406, 8.191 | 2.431 | 19.52 NW |
References
- Osborne, A.R.; Burch, T.L. Internal solitons in the Andaman Sea. Science 1980, 208, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.S.; Esq, M.A.; Edin, F.R.S. Report on Waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, London, UK. 1844. Available online: https://www.macs.hw.ac.uk/~chris/Scott-Russell/SR44.pdf (accessed on 4 August 2022).
- Apel, J.R.; Byrne, H.M.; Proni, J.R.; Charnell, R.L. Observations of oceanic internal and surface waves from the earth resources technology satellite. J. Geophys. Res. Oceans 1975, 80, 865–881. [Google Scholar] [CrossRef]
- Alpers, W. Theory of radar imaging of internal waves. Nature 1985, 314, 245–247. [Google Scholar] [CrossRef]
- Li, X.F.; Jackson, C.R.; Pichel, W.G. Internal solitary wave refraction at Dongsha Atoll, South China Sea. Geophys. Res. Lett. 2013, 40, 3128–3132. [Google Scholar] [CrossRef]
- Lu, K.X.; Wang, J.; Zhang, M. Study on prediction of internal solitary waves propagation in the southern Andaman Sea. J. Oceanogr. 2021, 77, 607–613. [Google Scholar] [CrossRef]
- Sun, L.N.; Zhang, J.; Meng, J.M. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS. Acta. Oceanol. Sin. 2019, 38, 121–128. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wang, J.; Sun, L.N.; Meng, J.M. Study on the amplitude inversion of internal waves at Wenchang area of the South China Sea. Acta. Oceanol. Sin. 2016, 35, 14–19. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, C.Q.; Meng, J.M.; Li, S.B.; Sun, L.N. Research on Internal Solitary Wave Detection and Analysis Based on Interferometric Imaging Radar Altimeter Onboard the Tiangong-2 Space Laboratory. Remote Sens. 2021, 14, 174. [Google Scholar] [CrossRef]
- Guo, C.; Chen, X.; Vlasenko, V.; Stashchuk, N. Numerical investigation of internal solitary waves from the Luzon Strait: Generation process, mechanism and three-dimensional effects. Ocean Model. 2011, 38, 203–216. [Google Scholar] [CrossRef]
- Jia, T.; Liang, J.J.; Li, X.M.; Sha, J. SAR observation and numerical simulation of internal solitary wave refraction and reconnection behind the Dongsha Atoll. J. Geophys. Res.-Oceans. 2018, 123, 74–89. [Google Scholar] [CrossRef]
- Shum, C.K.; Ries, J.C.; Tapley, B.D. The accuracy and applications of satellite altimetry. Geophys. J. Int. 1995, 121, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Jiang, J.S.; Zhang, H.Y.; Zhang, D.H. Spaceborne imaging altimeter for topographic mapping. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; pp. 2349–2351. [Google Scholar]
- Zhang, Y.H.; Shi, X.J.; Wang, H.J.; Tan, Y.Y.; Zhai, W.S.; Dong, X.; Kang, X.Y.; Yang, Q.S.; Li, D.; Jiang, J.S. Interferometric imaging radar altimeter on board Chinese Tiangong-2 space laboratory. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 851–853. [Google Scholar]
- Ray, R.D.; Mitchum, G.T. Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett. 1996, 23, 2101–2104. [Google Scholar] [CrossRef]
- da Silva, J.C.B.; Cerqueira, A.L.F. A note on radar altimeter signatures of Internal Solitary Waves in the ocean. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Edinburgh, Scotland, UK, 26–27 September 2016; Bostater, C.R., Neyt, X., Nichol, C., Aldred, O., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9999, p. 14. [Google Scholar]
- Magalhaes, J.M.; da Silva, J.C.B. Satellite Altimetry Observations of Large-Scale Internal Solitary Waves. IEEE Geosci. Remote S. 2017, 99, 1–5. [Google Scholar] [CrossRef]
- Santos-Ferreira, A.M.; da Silva, J.C.B.; Magalhaes, J.M. SAR Mode Altimetry Observations of Internal Solitary Waves in the Tropical Ocean Part 1: Case Studies. Remote Sens. 2018, 10, 644. [Google Scholar] [CrossRef] [Green Version]
- Santos-Ferreira, A.M.; da Silva, J.C.B.; Srokosz, M. SAR-Mode Altimetry Observations of Internal Solitary Waves in the Tropical Ocean Part 2: A Method of Detection. Remote Sens. 2019, 11, 1339. [Google Scholar] [CrossRef] [Green Version]
- Drees, L.; Kusche, J.; Roscher, R. Multi-modal deep learning with sentinel-3 observations for the detection of oceanic internal waves. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 2, 813–820. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zhang, J.; Meng, J.M.; Fan, C.Q.; Wang, J. Observation of internal waves with OLCI and SRAL on board Sentinel-3. Acta. Oceanol. Sin. 2020, 39, 56–62. [Google Scholar] [CrossRef]
- Magalhaes, J.M.; Alpers, W.; Santos-Ferreira, A.M.; da Silva, J.C.B. Surface Wave Breaking Caused by Internal Solitary Waves: Effects on Radar Backscattering Measured by SAR and Radar Altimeter. Oceanography 2021, 34, 166–176. [Google Scholar] [CrossRef]
- Santos-Ferreira, A.M.; da Silva, J.C.B.; Magalhaes, J.M.; Amraoui, S.; Moreau, T.; Maraldi, C.; Boy, F.; Picot, N.; Borde, F. Effects of Surface Wave Breaking Caused by Internal Solitary Waves in SAR Altimeter: Sentinel-3 Copernicus Products and Advanced New Products. Remote Sens. 2022, 14, 587. [Google Scholar] [CrossRef]
- Raney, R. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Dinardo, S. Techniques and Applications for Satellite SAR Altimetry over Water, Land and Ice. Ph.D. Thesis, Technical University, Berlin, Germany, 2020. [Google Scholar]
- Apel, J.R.; Holbrook, J.R.; Liu, A.K.; Tsia, J.J. The Sulu Sea Internal Soliton Experiment. J. Phys. Oceanogr. 1985, 15, 1625–1651. [Google Scholar] [CrossRef]
- Sun, L.N.; Zhang, J.; Meng, J.M. Analysis of Spatio-Temporal Distribution of Internal Solitary Waves in the South China Sea and Sulu Sea (2010–2015). Adv. Mar. Sci. Chin. 2019, 37, 398–408. [Google Scholar]
- Fu, L.-L.; Cazenave, A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2000; pp. 92–95. [Google Scholar]
- Rosmorduc, V.; Benveniste, J. Radar Altimetry Tutorial; Bronner, E., Dinardo, S., Lauret, O., Maheu, C., Milagro, M., Picot, N., Eds.; CLS: Toulouse, France, 2011; pp. 115–140. [Google Scholar]
- Zhang, H.; Meng, J.M.; Sun, L.N.; Li, S.B. Observations of Reflected Internal Solitary Waves near the Continental Shelf of the Dongsha Atoll. J. Mar. Sci. Eng. 2022, 10, 763. [Google Scholar] [CrossRef]
- Brown, G.S. Quasi-Specular Scattering from the Air-Sea Interface. In Surface Waves and Fluxes; Environmental Fluid Mechanics; Geernaert, G.L., Plant, W.L., Eds.; Springer: Dordrecht, The Netherlands, 1990; Volume 8, pp. 1–39. [Google Scholar]
- Jackson, F.C.; Walton, W.T.; Hines, D.E.; Walter, B.A.; Peng, C.Y. Sea surface mean square slope from Ku-band backscatter data. J. Geophys. Res.-Oceans. 1992, 97, 11411–11427. [Google Scholar] [CrossRef]
- Passaro, M.; Cipollini, P.; Vignudelli, S.; Quartly, G.D.; Snaith, H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens. Environ. 2014, 145, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Schlembach, F.; Passaro, M.; Dettmering, D.; Bidlot, J.; Seitz, F. Interference-sensitive coastal SAR altimetry retracking strategy for measuring significant wave height. Remote Sens. Environ. 2022, 274, 112968. [Google Scholar] [CrossRef]
- Dinardo, S.; Lucas, B.; Benveniste, J. Sentinel-3 STM SAR ocean retracking algorithm and SAMOSA model. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5320–5323. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Meng, J.; Sun, L.; Zhang, H.; Wang, H. Study of Sea Surface Geophysical Parameter Changes Due to Internal Solitary Waves Using a Sentinel-3 Synthetic Aperture Radar Altimeter. Remote Sens. 2022, 14, 5375. https://doi.org/10.3390/rs14215375
Yu C, Meng J, Sun L, Zhang H, Wang H. Study of Sea Surface Geophysical Parameter Changes Due to Internal Solitary Waves Using a Sentinel-3 Synthetic Aperture Radar Altimeter. Remote Sensing. 2022; 14(21):5375. https://doi.org/10.3390/rs14215375
Chicago/Turabian StyleYu, Changtian, Junmin Meng, Lina Sun, Hao Zhang, and Haiqi Wang. 2022. "Study of Sea Surface Geophysical Parameter Changes Due to Internal Solitary Waves Using a Sentinel-3 Synthetic Aperture Radar Altimeter" Remote Sensing 14, no. 21: 5375. https://doi.org/10.3390/rs14215375
APA StyleYu, C., Meng, J., Sun, L., Zhang, H., & Wang, H. (2022). Study of Sea Surface Geophysical Parameter Changes Due to Internal Solitary Waves Using a Sentinel-3 Synthetic Aperture Radar Altimeter. Remote Sensing, 14(21), 5375. https://doi.org/10.3390/rs14215375