Development of the Statistical Errors Raster Toolbox with Six Automated Models for Raster Analysis in GIS Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Developed Statistical Metrics
2.1.1. Equations of the Metrics
2.1.2. Model Requirements and Affordances
2.2. Application on Reference Evapotranspiration Images
2.2.1. Study Area
2.2.2. Employed Data
2.2.3. The Pairwise Comparison
2.2.4. Retrieval of the Output Metric Values
2.2.5. Metric Values Using External Software
3. Results
3.1. The Developed Statistical Models
3.1.1. Graphical Representation
3.1.2. Explanation of Variables and Execution
3.2. The ETo Implementation
Metric Values Computed bUsing the Models and Using External Software
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alwadei, S.; Farahat, A.; Ahmed, M.; Kambezidis, H.D. Prediction of Solar Irradiance over the Arabian Peninsula: Satellite Data, Radiative Transfer Model, and Machine Learning Integration Approach. Appl. Sci. 2022, 12, 717. [Google Scholar] [CrossRef]
- Wang, H.; Cao, L.; Li, X.; Feng, R.; Zheng, P. Differences in drought evolution as portrayed for China using various evapotranspiration models and drought indices. Int. J. Climatol. 2022, 1–26. [Google Scholar] [CrossRef]
- Zhang, X.; Song, P. Estimating Urban Evapotranspiration at 10m Resolution Using Vegetation Information from Sentinel-2: A Case Study for the Beijing Sponge City. Remote Sens. 2021, 13, 2048. [Google Scholar] [CrossRef]
- Shipley, S.T. GIS Applications in Meteorology, or Adventures in a Parallel Universe. Bull. Am. Meteorol. Soc. 2005, 86, 171–173. Available online: http://www.jstor.org/stable/26221241 (accessed on 29 August 2022). [CrossRef]
- Zhang, F.; Cao, N. Application and Research Progress of Geographic Information System (GIS) in Agriculture. In Proceedings of the 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar] [CrossRef]
- Nannawo, A.Q.S.; Lohani, T.K.; Eshete, A.A. Envisaging the actual evapotranspiration and elucidating its effects under climate change scenarios on agrarian lands of bilate river basin in Ethiopia. Heliyon 2022, 8, e10368. [Google Scholar] [CrossRef]
- Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K. A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 2015, 525, 197–208. [Google Scholar] [CrossRef]
- Böhner, J.; Bechtel, B. GIS in Climatology and Meteorology. In Comprehensive Geographic Information Systems; Huang, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 196–235. [Google Scholar] [CrossRef]
- Tegos, A.; Malamos, N.; Koutsoyiannis, D. RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling. Hydrology 2022, 9, 32. [Google Scholar] [CrossRef]
- Salamalikis, V.; Tzoumanikas, P.; Argiriou, A.A.; Kazantzidis, A. Site adaptation of global horizontal irradiance from the Copernicus Atmospheric Monitoring Service for radiation using supervised machine learning techniques. Renew. Energy 2022, 195, 92–106. [Google Scholar] [CrossRef]
- He, J.; Letu, H.; Lei, Y.; Guo, E.; Bao, S.; Zhang, Y.; Tana, G.; Bao, Y. Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979–2020. Remote Sens. 2022, 14, 685. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Natarajan, A.; Hegde, R. Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Chen, J.; He, L.; Ji, Y.; Tang, Q.; Fan, Y.; Tan, D. Dynamics of the Evaporation of Intercepted Precipitation during the Last Two Decades over China. Remote Sens. 2022, 14, 2474. [Google Scholar] [CrossRef]
- Tegos, A.; Ziogas, A.; Bellos, V.; Tzimas, A. Forensic Hydrology: A Complete Reconstruction of an Extreme Flood Event in Data-Scarce Area. Hydrology 2022, 9, 93. [Google Scholar] [CrossRef]
- Çelik, R. Evaluation of Groundwater Potential by GIS-Based Multicriteria Decision Making as a Spatial Prediction Tool: Case Study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey. Water 2019, 11, 2630. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lozano, J.M.; Teruel-Solano, J.; Soto-Elvira, P.L.; García-Cascales, M.S. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renew. Sustain. Energy Rev. 2013, 24, 544–556. [Google Scholar] [CrossRef]
- Aly, A.; Jensen, S.S.; Pedersen, A.B. Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew. Energy 2017, 113, 159–175. [Google Scholar] [CrossRef]
- Kariotis, S.; Giannakopoulos, E.; Kalavrouziotis, I.K. ArcGIS-mapping to sustainable wastewater management in Greece: Siting artificial wetlands systems in a biosystem. Glob. NEST J. 2021, 23, 97–104. [Google Scholar] [CrossRef]
- Bian, Y.; Dai, H.; Zhang, Q.; Yang, L.; Du, W. Spatial distribution of potential evapotranspiration trends in the Inner Mongolia Autonomous Region (1971–2016). Theor. Appl. Climatol. 2020, 140, 1161–1169. [Google Scholar] [CrossRef]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Kim, S.-J.; Bae, S.-J.; Jang, M.-W. Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data. Sustainability 2022, 14, 11674. [Google Scholar] [CrossRef]
- Zamani Losgedaragh, S.; Rahimzadegan, M. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). J. Hydrol. 2018, 561, 523–531. [Google Scholar] [CrossRef]
- Tian, Y.; Nearing, G.S.; Peters-Lidard, C.D.; Harrison, K.W.; Tang, L. Performance Metrics, Error Modeling, and Uncertainty Quantification. Mon. Weather. Rev. 2016, 144, 607–613. [Google Scholar] [CrossRef]
- Kang, D.; Mathur, R.; Rao, S.T.; Yu, S. Bias adjustment techniques for improving ozone air quality forecasts. J. Geophys. Res. 2008, 113, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tellen, V.A. A comparative analysis of reference evapotranspiration from the surface of rainfed grass in Yaounde, calculated by six empirical methods against the penman monteith formula. Earth Perspect. 2017, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Efthimiou, N.; Alexandris, S.; Karavitis, C.; Mamassis, N. Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman—Monteith procedure. Eur. J. Water Qual. 2013, 42, 19–34. [Google Scholar]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Kambezidis, H.D. 3.02—The Solar Resource. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 27–84. [Google Scholar] [CrossRef]
- Fox, D.G. Judging air quality model performance. A summary of the AMS workshop on Dispersion Model Performance. Bull. Am. Meteorol. 1981, 62, 599–609. [Google Scholar] [CrossRef]
- Hodson, T.O.; Over, T.M.; Foks, S.S. Mean squared error, deconstructed. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002681. [Google Scholar] [CrossRef]
- Hutcheon, J.A.; Chiolero, A.; Hanley, J.A. Random measurement error and regression dilution bias. BMJ 2010, 340, c2289. [Google Scholar] [CrossRef]
- Persson, H.J.; Ståhl, G. Characterizing Uncertainty in Forest Remote Sensing Studies. Remote Sens. 2020, 12, 505. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Xhafa, F. Chapter 3—Anomaly detection: Concepts and methods. In Anomaly Detection and Complex Event Processing over IoT Data Streams; Schneider, P., Xhafa, F., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 49–66. [Google Scholar] [CrossRef]
- Ait-Amir, B.; Pougnet, P.; El Hami, A. 6—Meta-Model Development. In Embedded Mechatronic Systems 2, 2nd ed.; El Hami, A., Pougnet, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 157–187. Available online: https://www.sciencedirect.com/science/article/pii/B9781785481901500062 (accessed on 29 August 2020). [CrossRef]
- Pal, R. Chapter 4—Validation methodologies. In Predictive Modeling of Drug Sensitivity; Pal, R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 83–107. [Google Scholar] [CrossRef]
- Kumar, Ν.; Maharshi, S.; Poddar, A.; Shankar, V. Evaluation of Artificial Neural Networks for Estimating Reference Evapotranspiration in Western Himalayan Region. In Proceedings of the International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 163–167. [Google Scholar] [CrossRef]
- Trajkovic, S.; Todorovic, B.; Stankovic, M. Forecasting of reference evapotranspiration by artificial neural networks. J. Irrig. Drain. Eng. 2003, 129, 454–457. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece. Water 2022, 14, 2027. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Comput. Appl. 2012, 23, 341–348. [Google Scholar] [CrossRef]
- Shamshirband, S.; Amirmojahedi, M.; Gocić, M.; Akib, S.; Petković, D.; Piri, J.; Trajkovic, S. Estimation of Reference Evapotranspiration Using Neural Networks and Cuckoo Search Algorithm. J. Irrig. Drain. Eng. 2016, 142, 04015044. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Multiple Linear Regression Models with Limited Data for the Prediction of Reference Evapotranspiration of the Peloponnese, Greece. Hydrology 2022, 9, 124. [Google Scholar] [CrossRef]
- Sattari, M.T.; Apaydin, H.; Band, S.S.; Mosavi, A.; Prasad, R. Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrol. Earth Syst. Sci. 2021, 25, 603–618. [Google Scholar] [CrossRef]
- Gavili, S.; Sanikhani, H.; Kisi, O.; Mahmoudi, M.H. Evaluation of several soft computing methods in monthly evapotranspiration modelling. Met. Apps 2018, 25, 128–138. [Google Scholar] [CrossRef] [Green Version]
- ESRI. Products. Available online: https://www.esri.com/en-us/arcgis/products/index (accessed on 20 August 2022).
- Microsoft Excel. Available online: https://www.microsoft.com/en-ww/microsoft-365/excel (accessed on 20 August 2022).
- IBM SPSS Statistics. Available online: https://www.ibm.com/products/spss-statistics (accessed on 15 July 2022).
- The MathWorks. Matlab. Available online: https://www.mathworks.com/ (accessed on 15 July 2022).
- The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 15 July 2022).
- Jebur, M.N.; Pradhan, B.; Shafri, H.Z.M.; Yusoff, Z.M.; Tehrany, M.S. An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications. Geosci. Model Dev. 2015, 8, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Senouci, R.; Taibi, N.-E.; Teodoro, A.C.; Duarte, L.; Mansour, H.; Yahia Meddah, R. GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria. Sustainability 2021, 13, 630. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Gonçalves, H. Deriving phenological metrics from NDVI through an open source tool developed in QGIS. In Proceedings of the SPIE 9245, Earth Resources and Environmental Remote Sensing/GIS Applications V, Online, 23 October 2014; p. 924511. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C. An easy, accurate and efficient procedure to create Forest Fire Risk Maps using Modeler (SEXTANTE plugin). J. For. Res. 2016, 27, 1361–1372. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Gonçalves, J.A.; Ribeiro, J.; Flores, D.; Lopez-Gil, A.; Dominguez-Lopez, A.; Angulo-Vinuesa, X.; Martin-Lopez, S.; Gonzalez-Herraez, M. Distributed Temperature Measurement in a Self-Burning Coal Waste Pile through a GIS Open Source Desktop Application. ISPRS Int. J. Geo-Inf. 2017, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Duarte, L.; Espinha Marques, J.; Teodoro, A.C. An Open Source GIS-Based Application for the Assessment of Groundwater Vulnerability to Pollution. Environments 2019, 6, 86. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elrahman, A.; Guan, Z.; Dalid, C.; Whitaker, V.; Britt, K.; Wilkinson, B.; Gonzalez, A. Automated Canopy Delineation and Size Metrics Extraction for Strawberry Dry Weight Modeling Using Raster Analysis of High-Resolution Imagery. Remote Sens. 2020, 12, 3632. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Yu, S.; Eder, B.; Dennis, R.; Chu, S.H.; Schwartz, S.E. New unbiased symmetric metrics for evaluation of air quality models. Atmosph. Sci. Lett. 2006, 7, 26–34. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitriadou, S.; Katsanou, K.; Stratikopoulos, K.; Lambrakis, N. Investigation of the chemical processes controlling the groundwater quality of Ilia Prefecture. Environ. Earth Sci. 2019, 78, 401. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Climatic Atlas of Greece. Available online: http://climatlas.hnms.gr/sdi/?lang=EN (accessed on 3 August 2022).
- Mamara, A.; Argiriou, A.A.; Anadranistakis, M. Homogenization of mean monthly temperature time series of Greece. Int. J. Climatol 2013, 33, 2649–2666. [Google Scholar] [CrossRef]
- Xystrakis, F.; Matzarakis, A. Evaluation of 13 Empirical Reference Potential Evapotranspiration Equations on the Island of Crete in Southern Greece. J. Irrig. Drain. Eng. 2011, 137, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Alexandris, S.G.; Stricevic, R.J.; Petkovic, S. Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula. Eur. Water 2008, 21–22, 17–28. [Google Scholar]
- USGS EarthExplorer. Available online: https://earthexplorer.usgs.gov (accessed on 12 March 2021).
- NASA EARTHDATA. Available online: https://urs.earthdata.nasa.gov (accessed on 12 March 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.; Ab, W. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 2008. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO 56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Abrishami, N.; Sepaskhah, A.R.; Shahrokhnia, M.H. Estimating wheat and maize daily evapotranspiration using artificial neural network. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 135, 945–958. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.B.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al. Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy 2022, 12, 516. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Reference Evapotranspiration (ETo) Methods Implemented as ArcMap Models with Remote-Sensed and Ground-Based Inputs, Examined along with MODIS ET, for Peloponnese, Greece. ISPRS Int. J. Geo-Inf. 2021, 10, 390. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Remote sensing methods to estimate evapotranspiration incorporating MODIS derived data and applications over Greece: A review. In Proceedings of the SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), Paphos, Cyprus, 26 August 2020. [Google Scholar] [CrossRef]
- Agricultural and Meteorological Software. Available online: https://agrimetsoft.com/calculators (accessed on 6 July 2022).
- Copernicus Land Monitoring Service. CLC 2018. ©European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA). Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 11 April 2022).
RMSE | MBE | MAE | NRMSE | NMBE | NMAE |
---|---|---|---|---|---|
, (1) | , (2) | , (3) | , (4) | , (5) | , (6) |
Attributes | Required | Not Required | Applicable |
---|---|---|---|
Same size of the raster inputs | X | ||
Same no-data pixels of the raster inputs | X | ||
Preprocessing to remove no-data pixels | X | ||
Programming background of users | X | ||
Same cell size of the raster inputs | X | ||
Same projection system of the raster inputs | X | ||
Same units of the raster inputs | X | ||
Inputs in .tiff format | X | ||
Outline of the study area (polygon) | X * | ||
Ability to apply for any study area | X | ||
Ability to insert and run the developed toolbox (ArcGIS Pro 3/ArcMap 10.8) | X | ||
Ability to modify models (free, provided the ARCGIS Pro 3/ArcMap 10.8 packages are already purchased) | X | ||
Ability to operate models as python (v.3 for ArcGIS Pro 3 and v.2.7.18 for ArcMap 10.8) scripts | X |
December 2018 | |||||
Inputs | Hargreaves Samani | Hansen | Makkink | MODIS ET | FAO PM |
August 2018 | |||||
Inputs | De Bruin | Blaney Criddle | Hammon 2 | MODIS ET | FAO PM |
December 2018 | |||||
---|---|---|---|---|---|
Hargreaves Samani—FAO PM | Hansen—FAO PM | Makkink—FAO PM | MODIS ET—FAO PM | Hansen—Hargreaves Samani | |
RMSE mod | 0.5031 | 0.4406 | 0.5590 | 0.5304 | 0.0893 |
RMSE soft | 0.5080 | 0.4440 | 0.5620 | 0.5320 | 0.0910 |
MBE mod | −0.4297 | −0.3499 | −0.4906 | −0.4656 | 0.0794 |
MBE soft | −0.4340 | −0.3520 | −0.4920 | −0.4640 | 0.0820 |
MAE mod | 0.4448 | 0.3696 | 0.4996 | 0.4728 | 0.0795 |
MAE soft | 0.4470 | 0.3700 | 0.5000 | 0.4730 | 0.0820 |
NRMSE mod | 0.3724 | 0.3261 | 0.4139 | 0.3930 | 0.0960 |
NRMSE soft | 0.3770 | 0.3290 | 0.4170 | 0.3940 | 0.0990 |
NMBE mod | −0.3180 | −0.2590 | −0.3630 | −0.3450 | 0.0862 |
NMBE soft | −0.3220 | −0.2610 | −0.3650 | −0.3440 | 0.0895 |
NMAE mod | 0.3292 | 0.2735 | 0.3698 | 0.3505 | 0.0862 |
NMAE soft | 0.3313 | 0.2744 | 0.3708 | 0.3504 | 0.0895 |
August 2018 | |||||
---|---|---|---|---|---|
De Bruin—FAO PM | Blaney Criddle—FAO PM | Hammon 2—FAO PM | MODIS ET—FAO PM | Hansen—Hargreaves Samani | |
RMSE mod | 0.6410 | 1.0660 | 1.6760 | 3.2420 | 0.5292 |
RMSE soft | 0.6530 | 1.0420 | 1.6370 | 3.2320 | 0.5210 |
MBE mod | −0.5869 | 0.9570 | 1.1967 | −3.1320 | −0.4870 |
MBE soft | −0.5990 | 0.9310 | 1.1460 | −3.1330 | −0.4780 |
MAE mod | 0.5869 | 0.9710 | 1.3850 | 3.1332 | 0.4889 |
MAE soft | 0.5990 | 0.9440 | 1.3460 | 3.1330 | 0.4790 |
NRMSE mod | 0.1231 | 0.2048 | 0.3221 | 0.6229 | 0.1148 |
NRMSE soft | 0.1250 | 0.2000 | 0.3140 | 0.6200 | 0.1130 |
NMBE mod | −0.1127 | 0.1839 | 0.2298 | −0.6017 | −0.1058 |
NMBE soft | −0.1150 | 0.1790 | 0.2200 | −0.6010 | −0.1043 |
NMAE mod | 0.1127 | 0.1865 | 0.2661 | 0.6019 | 0.1061 |
NMAE soft | 0.1149 | 0.1811 | 0.2583 | 0.6011 | 0.1045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadou, S.; Nikolakopoulos, K.G. Development of the Statistical Errors Raster Toolbox with Six Automated Models for Raster Analysis in GIS Environments. Remote Sens. 2022, 14, 5446. https://doi.org/10.3390/rs14215446
Dimitriadou S, Nikolakopoulos KG. Development of the Statistical Errors Raster Toolbox with Six Automated Models for Raster Analysis in GIS Environments. Remote Sensing. 2022; 14(21):5446. https://doi.org/10.3390/rs14215446
Chicago/Turabian StyleDimitriadou, Stavroula, and Konstantinos G. Nikolakopoulos. 2022. "Development of the Statistical Errors Raster Toolbox with Six Automated Models for Raster Analysis in GIS Environments" Remote Sensing 14, no. 21: 5446. https://doi.org/10.3390/rs14215446
APA StyleDimitriadou, S., & Nikolakopoulos, K. G. (2022). Development of the Statistical Errors Raster Toolbox with Six Automated Models for Raster Analysis in GIS Environments. Remote Sensing, 14(21), 5446. https://doi.org/10.3390/rs14215446