Effectiveness of the Reconstructed MODIS Typical-Angle Reflectances on Forest Biomass Estimation
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. MODIS MCD43A1 BRDF Product
2.3. MODIS MOD44B Vegetation Continuous Field (VCF) Data
2.4. MODIS Land Cover Data
2.5. SRTM Data
2.6. Landsat Surface Reflectance Data
2.7. Field-Based Forest Biomass Data
3. Models and Methods
3.1. Models
3.1.1. The RTCLSR Kernel-Based BRDF Model
3.1.2. 4-Scale Model
3.2. Methods
3.2.1. EFAST Global Sensitivity Analysis Method
3.2.2. Assessment of Pixel Homogeneity
3.3. Accuracy Validation
4. Results and Analysis
4.1. Sensitivity Analysis of the BRDF Information to Forest Biomass
4.1.1. Sensitivity Analysis of Typical-Angle Reflectances to Forest Biomass from Canopy Height and Crown Diameter
4.1.2. Sensitivity Analysis of BRDF Shape Indicators to Forest Biomass from Canopy Height and Crown Diameter
4.2. Performance of the MODIS BRDF Information on Forest Biomass Estimation
4.2.1. Performance of the MODIS Typical-Angle Reflectances on Forest Biomass Estimation
4.2.2. Performance of the MODIS BRDF Shape Indicators on Forest Biomass Estimation
4.3. Seasonal Effects of Using MODIS BRDF Information to Estimate Forest Biomass
5. Discussion
5.1. Uncertainty Factors of This Study
5.2. Prospects of Using BRDFs for Large-Scale AGB Mapping
6. Conclusions
- (i)
- The typical directional reflectances in the red and NIR bands and the constructed BRDF shape indicators show sensitivity to capture the variation in biomass-related canopy structure parameters (i.e., canopy height and crown diameter) in terms of the sensitivity analysis using the 4-scale model simulations.
- (ii)
- The MODIS typical directional reflectances in the NIR band show a good linear relationship with the field-based forest AGB after filtering the influence of terrain slope and pixel heterogeneity; in particular, the hotspot reflectance from the NIR band can explain up to 62% of the biomass variations. It is also worth noting that the BRDF shape indicators (i.e., NDVI-HD and NDVI-HS) that are constructed from MODIS multi-angle observations and were originally designed for the inversion of LAI have a good linear relationship with field-based forest AGB. In particular, NDVI-HD with a ground vegetation cover index term yielded a better performance than NDVI-HS and can explain up to 52% of the biomass variation.
- (iii)
- Seasonal effects on biomass estimation using BRDF data are noteworthy. Seasonal changes lead to changes in the spectral characteristics of the land cover and the observed geometry at the corresponding locations; the above changes will eventually influence the observed multi-angle anisotropic information, further affecting the estimation accuracy of forest AGB. Therefore, it is necessary to ensure the consistency of the ground observation and satellite observation time as fully as possible when constructing a biomass inversion model based on BRDF data.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Site | Plot_ID | Latitude (°) | Longitude (°) | Biomass (Mg ha−1) | Time (yyyy-mm-dd) | D/L |
---|---|---|---|---|---|---|
Bartlett | 13L | 44.053185 | −71.310543 | 200.59 | 2009.7.11 | 75/648 |
Bartlett | 21L | 44.054021 | −71.300303 | 229.44 | 2009.7.13 | 17/411 |
Bartlett | 30N | 44.054162 | −71.289812 | 255.46 | 2009.7.12 | 82/800 |
Harvard | PH1 | 42.534074 | −72.182013 | 305.44 | 2009.6.25 | 179/936 |
Harvard | PH10 | 42.536547 | −72.175841 | 139.03 | 2009.7.24 | 55/785 |
Harvard | PH2 | 42.538096 | −72.177597 | 208.88 | 2009.7.27 | 63/753 |
Harvard | PH3 | 42.536557 | −72.172724 | 256.43 | 2009.7.23 | 24/475 |
Harvard | PH4 | 42.536516 | −72.179817 | 271.89 | 2009.7.14 | 27/551 |
Harvard | PH5 | 42.540983 | −72.170486 | 219.34 | 2009.7.28 | 66/702 |
Harvard | PH6 | 42.540467 | −72.183034 | 127.38 | 2009.7.16 | 61/817 |
Harvard | PH7 | 42.539223 | −72.187066 | 282.08 | 2009.7.17 | 70/834 |
Harvard | PH8 | 42.551416 | −72.176897 | 145.36 | 2009.7.26 | 22/359 |
Harvard | SC1 | 42.480697 | −72.174601 | 206.87 | 2009.7.25 | 83/763 |
Harvard | SF2 | 42.508234 | −72.250973 | 309.28 | 2009.7.27 | 77/612 |
Harvard | TS2 | 42.512857 | −72.205741 | 236.60 | 2009.7.25 | 20/520 |
Howland | H2 | 45.22755 | −68.725911 | 26.83 | 2009.8.20 | 12/242 |
Howland | H3 | 45.225188 | −68.724381 | 34.39 | 2009.8.24 | 26/629 |
Howland | H5 | 45.222658 | −68.716496 | 91.87 | 2009.8.25 | 42/571 |
Howland | H6 | 45.214881 | −68.735791 | 57.80 | 2009.8.24 | 18/432 |
Howland | H8 | 45.214646 | −68.709366 | 18.65 | 2009.8.26 | 0/148 |
Howland | H9 | 45.210844 | −68.737554 | 105.80 | 2009.8.19 | 14/541 |
Howland | H12 | 45.203327 | −68.741371 | 167.57 | 2009.8.19 | 76/1212 |
Howland | H17 | 45.152076 | −68.735178 | 131.73 | 2009.8.27 | 35/687 |
Howland | H18 | 45.147732 | −68.718229 | 122.98 | 2009.8.27 | 30/677 |
Hubbard Brook | 1 | 43.936143 | −71.741518 | 267.26 | 2009.7.22 | 52/614 |
Hubbard Brook | 200 | 43.940344 | −71.778636 | 261.25 | 2009.7.20 | 57/833 |
Hubbard Brook | 339 | 43.945148 | −71.709622 | 257.82 | 2009.7.27 | 97/850 |
Hubbard Brook | 354 | 43.941246 | −71.703841 | 246.54 | 2009.7.18 | 63/628 |
Hubbard Brook | 349–350 | 43.947527 | −71.704189 | 213.38 | 2009.7.24 | 60/618 |
Penobscot | P1 | 44.871236 | −68.626076 | 233.43 | 2009.8.25 | 97/687 |
Penobscot | P4 | 44.858001 | −68.620421 | 44.76 | 2009.8.24 | 12/886 |
Penobscot | P5 | 44.851611 | −68.618074 | 124.65 | 2009.8.18 | 17/484 |
Penobscot | P6 | 44.850592 | −68.613788 | 51.60 | 2009.8.19 | 29/604 |
Penobscot | P7 | 44.848417 | −68.615501 | 122.27 | 2009.8.19 | 13/491 |
Penobscot | P10 | 44.84406 | −68.619475 | 120.84 | 2009.8.20 | 19/672 |
Penobscot | P11 | 44.844779 | −68.614519 | 93.37 | 2009.8.20 | 10/549 |
Penobscot | P13 | 44.835663 | −68.599269 | 199.65 | 2009.8.26 | 94/994 |
References
- Zhao, K.G.; Suarez, J.C.; Garcia, M.; Hu, T.X.; Wang, C.; Londo, A. Utility of Multi Temporal Lidar for Forest and Carbon Monitoring: Tree Growth, Biomass Dynamics, and Carbon Flux. Remote Sens. Environ. 2018, 204, 883–897. [Google Scholar] [CrossRef]
- Garcia, M.; Riano, D.; Chuvieco, E.; Danson, F.M. Estimating Biomass Carbonstocks for a Mediterranean Forest in Central Spain Using Lidar Height and Intensity Data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Garcia, M.; Ferraz, A.; Keller, M.; Eitel, J.; Saatchi, S. Impacts of Airborne Lidar Pulse Density On Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest. Remote Sens. 2017, 9, 1068. [Google Scholar] [CrossRef] [Green Version]
- Goetz, S.; Dubayah, R. Advances in Remote Sensing Technology and Implications for Measuring and Monitoring Forest Carbonstocks and Change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.; Nelson, R. Lidar Remote Sensing of Forest Biomass: A Scale-Invariant Estimation Approach Using Airborne Lasers. Remote Sens. Environ. 2009, 133, 182–196. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A Review of Radar Remote Sensing for Biomass Estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Mermoz, S.; Rejou-Mechain, M.; Villard, L.; Le Loan, T.; Rossi, V.; Gourlet-Fleury, S. Decrease of L-Band Sar Backscatter with Biomass of Dense Forests. Remote Sens. Environ. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Paloscia, S.; Macelloni, G.; Pampaloni, P.; Sigismondi, S. The Potential of C- And L-Band Sar in Estimating Vegetation Biomass: The Ers-1 and Jers-1 Experiments. IEEE Trans. Geosci. Remote 1999, 37, 2107–2110. [Google Scholar] [CrossRef]
- Huang, X.D.; Ziniti, B.; Torbick, N.; Ducey, M.J. Assessment of Forest Above Ground Biomass Estimation Using Multi-Temporal C-Band Sentinel-1 and Polarimetric L-Band Palsar-2 Data. Remote Sens. 2018, 10, 1424. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.; Nichol, J.; Iz, H.B.; Bin Ahmad, B.; Rahman, A.A. Forest Biomass Estimation Using Texture Measurements of High-Resolution Dual-Polarization C-Band Sar Data. IEEE Trans. Geosci. Remote 2013, 51, 3371–3384. [Google Scholar] [CrossRef]
- Berninger, A.; Lohberger, S.; Stangel, M.; Siegert, F. Sar-Based Estimation of Above-Ground Biomass and its Changes in Tropical Forests of Kalimantan Using L- And C-Band. Remote Sens. 2018, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Sun, G.Q.; Huang, J.L.; Li, R.D.; Ren, X.Y.; Ni, W.J.; Fu, A.M. Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using Icesat/Glas and Landsat/Tm Data. Remote Sens. 2017, 9, 707. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.J.; Li, M.S.; Huang, C.Q.; Tao, X.; Wei, A.S. Annual Forest Aboveground Biomass Changes Mapped Using Icesat/Glas Measurements, Historical in Ventory Data, and Time-Series Optical and Radar Imagery for Guangdong Province, China. Agric. For. Meteorol. 2018, 259, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Xi, X.H.; Han, T.T.; Wang, C.; Luo, S.Z.; Xia, S.B.; Pan, F.F. Forest Aboveground Biomass Inversion by Fusing Glas with Optical Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2016, 5, 45. [Google Scholar] [CrossRef]
- Sun, M.; Cui, L.; Park, J.; García, M.; Zhou, Y.; Silva, C.A.; He, L.; Zhang, H.; Zhao, A.K. Evaluation of Nasa’s Gedi Lidar Observations for Estimating Biomass in Temperate and Tropical Forests. Forests 2022, 13, 1686. [Google Scholar] [CrossRef]
- Qi, W.L.; Saarela, S.; Armston, J.; Stahl, G.; Dubayah, R. Forest Biomass Estimation Over Three Distinct Forest Types Using Tandem-X Insar Data and Simulated Gedi Lidar Data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Hilker, T.; Galvão, L.S.; Aragão, L.E.O.C.; de Moura, Y.M.; Amaral, C.H.D.; Lyapustin, A.I.; Wu, J.; Albert, L.P.; Ferreira, M.J.; Anderson, L.O.; et al. Vegetation Chlorophyll Estimates in the Amazon From Multi-Angle Modis Observations and Canopy Reflectance Model. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 278–287. [Google Scholar] [CrossRef] [Green Version]
- DeMoura, Y.M.; Hilker, T.; GuimarãesGonçalves, F.; SoaresGalvão, L.; Santos, J.R.D.; Lyapustin, A.; Maeda, E.E.; de Jesus Silva, C.V. Scaling Estimates of Vegetation Structure in Amazonian Tropical Forests Using Multi-Angle Modis Observations. Int. J. Appl. Earth Obs. 2016, 52, 580–590. [Google Scholar]
- De Sousa, C.H.R.; Hilker, T.; Waring, R.; De Moura, Y.M.; Lyapustin, A. Progress in Remote Sensing of Photosynthetic Activity Over the Amazon Basin. Remote Sens. 2017, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Liesenberg, V.; Galvão, L.S.; Ponzoni, F.J. Variations in Reflectance with Seasonality and Viewing Geometry: Implications for Classification of Brazilian Savanna Physiognomies with Misr/Terra Data. Remote Sens. Environ. 2007, 107, 276–286. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. A Four-Scale Bidirectional Reflectance Model Based On Canopy Architecture. IEEE Trans. Geosci. Remote 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Gerard, F.F.; North, P.R.J. Analyzing the Effect of Structural Variability and Canopy Gaps On Forest Brdf Using a Geometric-Optical Model. Remote Sens. Environ. 1997, 62, 46–62. [Google Scholar] [CrossRef]
- LI, X.W.; Straher, A.H. Geometric-Optical Bidirectional Reflectance Modeling of the Discrete Crown Vegetation Canopy—Effect of Crown Shape and Mutual Shadowing. IEEE Trans. Geosci. Remote 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Qi, J.; Kerr, Y.H.; Moran, M.S.; Weltz, M.; Huete, A.R.; Sorooshian, S.; Bryant, R. Leaf Area Index Estimates Using Remotely Sensed Data and Brdf Models in a Semiarid Region. Remote Sens. Environ. 2000, 73, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.T.; Dong, Y.D.; Schaaf, C.B.; Chen, J.M.; Roman, M.; Wang, Z.S.; Zhang, H.; Ding, A.X.; Erb, A.; Hill, M.J.; et al. An Algorithm for the Retrieval of the Clumping Index (Ci) from the Modis Brdf Product Using an Adjusted Version of the Kernel-Driven Brdf Model. Remote Sens. Environ. 2018, 209, 594–611. [Google Scholar] [CrossRef]
- Cui, L.; Jiao, Z.T.; Dong, Y.D.; Sun, M.; Zhang, X.N.; Yin, S.Y.; Ding, A.X.; Chang, Y.X.; Guo, J.; Xie, R. Estimating Forest Canopy Height Using Modis Brdf Data Emphasizing Typical-Angle Reflectances. Remote Sens. 2019, 11, 2239. [Google Scholar] [CrossRef] [Green Version]
- Madugundu, R.; Nizalapur, V.; Jha, C.S. Estimation of Lai and Above-Ground Biomass in Deciduous Forests: Western Ghats of Karnataka, India. Int. J. Appl. Earth Obs. 2008, 10, 211–219. [Google Scholar] [CrossRef]
- Thomas, V.; Noland, T.; Treitz, P.; McCaughey, J.H. Leaf Area and Clumping Indices for Aboreal Mixed-Wood Forest: Lidar, Hyperspectral, and Landsat Models. Int. J. Remote Sens. 2011, 32, 8271–8297. [Google Scholar] [CrossRef]
- Kattenborn, T.; Maack, J.; Faßnacht, F.; Enßle, F.; Ermert, J.; Koch, B. Mapping Forest Biomass From Space—Fusion of Hyperspectral Eo1-Hyperion Data and Tandem-X and Worldview-2 Canopy Height Models. Int. J. Appl. Earth Obs. 2015, 35, 359–367. [Google Scholar] [CrossRef]
- Chopping, M.; Wang, Z.S.; Schaaf, C.; Bull, M.A.; Duchesne, R.R. Forest Aboveground Biomass in the South Western United States From a Misr Multi-Angle Index, 2000-2015. Remote Sens Environ 2022, 275, 112964. [Google Scholar] [CrossRef]
- Nakano, T.; Bavuudorj, G.; Urianhai, N.G.; Shinoda, M. Monitoring Aboveground Biomass in Semiarid Grasslands Using Modis Images. J. Agric. Meteorol. 2013, 69, 33–39. [Google Scholar] [CrossRef]
- Zheng, D.; Heath, L.S.; Ducey, M.J. Forest Biomass Estimated From Modis and Fia Data in the Lake States: Mn, Wi and Mi, Usa. Forestry 2007, 80, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Li, L.; Tian, X.; Luo, G.; Chen, X. Estimation of Above-Ground Biomass Using Modis Satellite Imagery of Multiple Land-Cover Types in China. Remote Sens Lett 2016, 7, 1141–1149. [Google Scholar] [CrossRef]
- Yin, G.; Zhang, Y.; Sun, Y.; Wang, T.; Zeng, Z.; Piao, S. Modis Based Estimation of Forest Aboveground Biomass in China. PLoS ONE 2015, 10, e130143. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Cheng, F.; Dong, S.; Zhao, H.; Hou, X.; Wu, X. Spatiotemporal Dynamics of Grassland Aboveground Biomass On the Qinghai-Tibet Plateau Based On Validated Modis Ndvi. Sci. Rep. 2017, 7, 4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paltsyna, M.Y.; Gibbsa, J.P.; Iegorovaa, L.V.; Mountrakisb, G. Estimation and Prediction of Grassland Cover in Western Mongolia Using Modis-Derived Vegetation Indices. Rangel. Ecol. Manag. 2017, 70, 723–729. [Google Scholar] [CrossRef]
- Cook, B.; Dubayah, R.O.; Hall, F.G.; Nelson, R.F.; Ranson, K.J.; Strahler, A.H.; Siqueira, P.; Simard, M.; Griffith, P. NACP New England and Sierra National Forests Biophysical Measurements: 2008–2010; ORNL DAAC: Oak Ridge, TN, USA, 2011. [Google Scholar] [CrossRef]
- MCD43A1 v061 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global 500 m SIN Grid. Available online: https://lpdaac.usgs.gov/products/mcd43a1v061/ (accessed on 6 March 2022).
- Hansen, M.C.; DeFries, R.S.; Townshend, J.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the Modis Vegetation Continuous Fields Algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 Modis Land Cover (Mcd12Q1 and Mcd12C1) Product; USGS: Reston, VA, USA, 2018. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.B.; Li, X.; Strahler, A.H. Topographic Effects On Bidirectional and Hemispherical Reflectances Calculated with a Geometric-Optical Canopy Model. IEEE Trans. Geosci. Remote 1994, 32, 1186–1193. [Google Scholar] [CrossRef]
- Yan, K.; Li, H.L.; Song, W.J.; Tong, Y.Y.; Hao, D.L.; Zeng, Y.L.; Mu, X.H.; Yan, G.J.; Fang, Y.; Myneni, R.B.; et al. Extending a Linear Kernel-Driven Brdf Model to Realistically Simulate Reflectance Anisotropy over Rugged Terrain. IEEE Trans. Geosci. Remote 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Wen, J.G.; Liu, Q.; Tang, Y.; Dou, B.C.; You, D.Q.; Xiao, Q.; Liu, Q.H.; Li, X.W. Modeling Land Surface Reflectance Coupled Brdf for Hj-1/Ccd Data of Rugged Terrain in Heihe River Basin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1506–1518. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat Surface Reflectance Dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat8/Oli Landsurface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Roman, M.O.; Shuai, Y.M.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of Modis Albedo Product (Mcd43a) Over Grassland, Agriculture and Forest Surface Types During Dormant and Snow-Covered Periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.Y.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L.; et al. The Modis (Collectionv005) Brdf/Albedo Product: Assessment Ofspatial Representativeness Over Forested Landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef] [Green Version]
- Young, H.E.; Ribe, J.H.; Wainwright, K. Weight Tables for Tree and Shrub Species in Maine; Life Sciences and Agriculture Experiment Station, University of Maine at Orono: Orono, ME, USA, 1980; p. 84. [Google Scholar]
- Jiao, Z.T.; Schaaf, C.B.; Dong, Y.D.; Roman, M.; Hill, M.J.; Chen, J.M.; Wang, Z.S.; Zhang, H.; Saenz, E.; Poudyal, R.; et al. A Method for Improving Hotspot Directional Signatures in Brdf Models Used for Modis. Remote Sens. Environ. 2016, 186, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Roujean, J.; Leroy, M.; Deschamps, P. A Bidirectional Reflectance Model of the Earth’s Surface for the Correction of Remote Sensing Data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef] [Green Version]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An Algorithm for the Retrieval of Albedo from Space Using Semiempirical Brdf Models. IEEE Trans. Geosci. Remote 2000, 38, 977–998. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.D.; Jiao, Z.T.; Yin, S.Y.; Zhang, H.; Zhang, X.N.; Cui, L.; He, D.D.; Ding, A.X.; Chang, Y.X.; Yang, S.T. Influence of Snow on the Magnitude and Seasonal Variation of the Clumping Index Retrieved from Modis Brdf Products. Remote Sens. 2018, 10, 1194. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global Mapping of Foliage Clumping Index Using Multi-Angular Satellite Data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Pocewicz, A.; Vierling, L.A.; Lentile, L.B.; Smith, R. View Angle Effects on Relationships between Misr Vegetation Indices and Leaf Area Index in a Recently Burned Ponderosa Pine Forest. Remote Sens. Environ. 2007, 107, 322–333. [Google Scholar] [CrossRef]
- Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. Physical Mechanisms in Hyperspectral Brdf Data of Grass and Watercress. Remote Sens. Environ. 1998, 66, 222–233. [Google Scholar] [CrossRef]
- Zhang, G.; Ganguly, S.; Nemani, R.R.; White, M.A.; Milesi, C.; Hashimoto, H.; Wang, W.; Saatchi, S.; Yu, Y.; Myneni, R.B. Estimation of Forest Aboveground Biomass in California Using Canopy Height and Leaf Area Index Estimated from Satellite Data. Remote Sens. Environ. 2014, 151, 44–56. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Q.H.; Kelly, M. Allometric Equation Choice Impacts Lidar-Based Forest Biomass Estimates: A Case Study From the Sierra National Forest, Ca. Agric. For. Meteorol. 2012, 165, 64–72. [Google Scholar] [CrossRef]
- Cukier, R.I.; Fortuin, C.M.; Shuler, K.E.; Petschek, A.G.; Schaibly, J.H. Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. I Theory. J. Chem. Phys. 1970, 59, 3873–3878. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Sun, Q.S.; Kim, J.; Erb, A.M.; Gao, F.; Roman, M.O.; Yang, Y.; Petroy, S.; Taylor, J.R.; et al. Monitoring Land Surface Albedo and Vegetation Dynamics Using High Spatial and Temporal Resolution Synthetic Time Series From Landsat and the Modis Brdf/Nbar/Albedo Product. Int. J. Appl. Earth Obs. 2017, 59, 104–117. [Google Scholar] [CrossRef]
- Eisenhauer, J.G. Regression through the Origin. Teach. Stat. 2003, 25, 76–80. [Google Scholar] [CrossRef]
- Sandmeier, S.R.; Strahler, A.H. Brdf Laboratory Measurements. Remote Sens. Rev. 2000, 18, 481–502. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. Multiple-Scattering Scheme Useful for Geometric Optical Modeling. IEEE Trans. Geosci. Remote 2001, 39, 1061–1071. [Google Scholar] [CrossRef]
- Jiao, Z.; Hill, M.J.; Schaaf, C.B.; Zhang, H.; Wang, Z.; Li, X. An Anisotropic Flat Index (Afx) to Derive Brdf Archetypes From Modis. Remote Sens. Environ. 2014, 141, 168–187. [Google Scholar] [CrossRef]
- Gao, F.; Schaaf, C.B.; Strahler, A.H.; Jin, Y.; Li, X. Detecting Vegetation Structure Using a Kernel-Based Brdf Model. Remote Sens. Environ. 2003, 86, 198–205. [Google Scholar] [CrossRef]
- Fang, H.L.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (Lai): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Wen, J.G.; Liu, Q.; Xiao, Q.; Liu, Q.H.; You, D.Q.; Hao, D.L.; Wu, S.B.; Lin, X.W. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Jiao, Z.; Zhao, K.; Sun, M.; Dong, Y.; Yin, S.; Li, Y.; Chang, Y.; Guo, J.; Xie, R.; et al. Retrieval of Vertical Foliage Profile and Leaf Area Index Using Transmitted Energy Information Derived From Icesat Glas Data. Remote Sens. 2020, 15, 2457. [Google Scholar] [CrossRef]
- Hall, F.G.; Shimabukuro, Y.E.; Huemmrich, K.F. Remote Sensing of Forest Biophysical Structure Using Mixture Decomposition and Geometric Reflectance Models. Ecol. Appl. 1995, 5, 993–1013. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, Z.; Zhao, K.; Dong, Y.; Zhou, Y.; Zeng, Y.; Xu, H.; Zhang, X.; Hu, T.; Cui, L. Influence of Varying Solar Zenith Angles on Land Surface Phenology Derived from Vegetation Indices: A Case Study in the Harvard Forest. Remote Sens. 2021, 13, 4126. [Google Scholar] [CrossRef]
- Li, F.Q.; Jupp, D.; Reddy, S.; Lymburner, L.; Mueller, N.; Tan, P.; Islam, A. An Evaluation of the Use of Atmospheric and Brdf Correction to Standardize Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 257–270. [Google Scholar] [CrossRef]
- Jiao, Z.T.; Zhang, X.N.; Breon, F.M.; Dong, Y.D.; Schaaf, C.B.; Roman, M.; Wang, Z.S.; Cui, L.; Yin, S.Y.; Ding, A.X.; et al. The Influence of Spatial Resolution on the Angular Variation Patterns of Optical Reflectance as Retrieved from Modis and Polder Measurements. Remote Sens. Environ. 2018, 215, 371–385. [Google Scholar] [CrossRef]
- Cui, L.; Jiao, Z.T.; Zhao, K.G.; Sun, M.; Dong, Y.D.; Yin, S.Y.; Zhang, X.N.; Guo, J.; Xie, R.; Zhu, Z.D.; et al. Retrieving Forest Canopy Elements Clumping Index Using Icesat Glas Lidar Data. Remote Sens. 2021, 13, 948. [Google Scholar] [CrossRef]
- Yee, M.S.; Walker, J.P.; Monerris, A.; Rudiger, C.; Jackson, T.J. On the Identification of Representative in Situ Soil Moisture Monitoring Stations for the Validation of Smap Soil Moisture Products in Australia. J. Hydrol. 2016, 537, 367–381. [Google Scholar] [CrossRef]
- Pilli, R.; Anfodillo, T.; Carrer, M. Towards a Functional and Simplified Allometry for Estimating Forest Biomass. For. Ecol. Manag. 2006, 237, 583–593. [Google Scholar] [CrossRef]
Names | Abbr. | Formulas | Application Areas |
---|---|---|---|
Normalized difference between hotspot and darkspot index | NDHD | Clumping index | |
Hotspot darkspot index | HDS | Clumping index | |
Anisotropic factor | ANIX | Landcover types | |
Normalized difference anisotropic index | NDAX | Landcover types | |
Hotspot darkspot NDVI | NDVI-HD | Leaf area index | |
Hotspot incorporated NDVI | NDVI-HS | Leaf area index |
Input Parameter | Symbol | Unit | Values and Ranges |
---|---|---|---|
Site parameters | |||
Stand density | SD | Trees/ha | 500–5000 |
Canopy parameters | |||
Leaf area index | LAI | m2 | 0–8 |
Clumping index | CI | dimensionless | 0.33–1 |
Canopy height | HC | m | 5–60 |
Crown based height | HB | m | 1–10 |
Crown radius | RC | m | 0.5–5 |
Newman clustering | NC | dimensionless | 1–6 |
Optical property parameters | |||
Leaf reflectance in red | REDT | dimensionless | 0.08 |
Leaf reflectance in NIR | NIRT | dimensionless | 0.6 |
Leaf transitivity in red | REDTT | dimensionless | 0.05 |
Leaf transitivity in NIR | NIRTT | dimensionless | 0.35 |
Background reflectance in red band | REDG | dimensionless | 0.1 |
Background reflectance in NIR band | NIRG | dimensionless | 0.25 |
Observation geometry parameter | |||
Solar zenith angle | SZA | degree | 35 |
Relative azimuth angle | PHI | degree | 0, 180 |
View zenith angle | VZA | degree | 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 |
Multi-Angle Reflectances | Using All Field-Based Biomass Data | Using Selected Field-Based Biomass Data | ||||
---|---|---|---|---|---|---|
R2 | RMSE (Mg/ha) | nRMSE | R2 | RMSE (Mg/ha) | nRMSE | |
Hotspot-NIR | 0.20 | 77.18 | 0.41 | 0.63 | 54.28 | 0.31 |
Nadir-NIR | 0.21 | 76.54 | 0.41 | 0.55 | 59.95 | 0.34 |
Darkspot-NIR | 0.12 | 80.92 | 0.43 | 0.46 | 65.66 | 0.38 |
Hotspot-red | 0.07 | 83.27 | 0.45 | 0.25 | 77.65 | 0.45 |
Nadir-red | 0.02 | 85.59 | 0.46 | 0.21 | 79.44 | 0.46 |
Darkspot-red | 0.001 | 86.33 | 0.46 | 0.06 | 86.82 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Sun, M.; Jiao, Z.; Park, J.; Agca, M.; Zhang, H.; He, L.; Dai, Y.; Dong, Y.; Zhang, X.; et al. Effectiveness of the Reconstructed MODIS Typical-Angle Reflectances on Forest Biomass Estimation. Remote Sens. 2022, 14, 5475. https://doi.org/10.3390/rs14215475
Cui L, Sun M, Jiao Z, Park J, Agca M, Zhang H, He L, Dai Y, Dong Y, Zhang X, et al. Effectiveness of the Reconstructed MODIS Typical-Angle Reflectances on Forest Biomass Estimation. Remote Sensing. 2022; 14(21):5475. https://doi.org/10.3390/rs14215475
Chicago/Turabian StyleCui, Lei, Mei Sun, Ziti Jiao, Jongmin Park, Muge Agca, Hu Zhang, Long He, Yiqun Dai, Yadong Dong, Xiaoning Zhang, and et al. 2022. "Effectiveness of the Reconstructed MODIS Typical-Angle Reflectances on Forest Biomass Estimation" Remote Sensing 14, no. 21: 5475. https://doi.org/10.3390/rs14215475
APA StyleCui, L., Sun, M., Jiao, Z., Park, J., Agca, M., Zhang, H., He, L., Dai, Y., Dong, Y., Zhang, X., Lian, Y., Chen, L., & Zhao, K. (2022). Effectiveness of the Reconstructed MODIS Typical-Angle Reflectances on Forest Biomass Estimation. Remote Sensing, 14(21), 5475. https://doi.org/10.3390/rs14215475