Mapping Irregular Local Climate Zones from Sentinel-2 Images Using Deep Learning with Sequential Virtual Scenes
Abstract
:1. Introduction
2. The Proposed Method
2.1. Sequential Virtual Scenes
2.2. Image Patch Learning with ResNet
2.3. Learning the Adjacent Relationship with Bi-LSTM
2.4. Weighting the Virtual Scenes with a Self-Attention Mechanism
3. Test Sites and Data
3.1. Test Sites
3.2. Sentinel Multispectral Imagery
3.3. Sample Preparation
3.4. Accuracy Evaluation
4. Results
4.1. Evaluating the Performance of the Proposed Method
4.2. The LCZ Maps of Test Cities
5. Discussions
5.1. The Influences of Sequence Compositions
5.2. Weighting Virtual Scenes by the Self-Attention Mechanism
5.3. Contributions and Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoo, C.; Han, D.; Im, J.; Bechtel, B. Comparison between Convolutional Neural Networks and Random Forest for Local Climate Zone Classification in Mega Urban Areas Using Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 157, 155–170. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q. Local Climate Zone Mapping as Remote Sensing Scene Classification Using Deep Learning: A Case Study of Metropolitan China. ISPRS J. Photogramm. Remote Sens. 2020, 164, 229–242. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Wang, R. Investigating the Relationship between Local Climate Zone and Land Surface Temperature Using an Improved WUDAPT Methodology—A Case Study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Mayer, L.; Intergovernmental Panel on Climate Change (Eds.) Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2.
- Bechtel, B.; Daneke, C. Classification of Local Climate Zones Based on Multiple Earth Observation Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1191–1202. [Google Scholar] [CrossRef]
- Coseo, P.; Larsen, L. How Factors of Land Use/Land Cover, Building Configuration, and Adjacent Heat Sources and Sinks Explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Tuia, D.; Moser, G.; Le Saux, B.; Bechtel, B.; See, L. 2017 IEEE GRSS Data Fusion Contest: Open Data for Global Multimodal Land Use Classification [Technical Committees]. IEEE Geosci. Remote Sens. Mag. 2017, 5, 70–73. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y.; Liu, X.; Zhang, X. Impacts of Urban Biophysical Composition on Land Surface Temperature in Urban Heat Island Clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Fu, C.; Song, X.-P.; Stewart, K. Integrating Activity-Based Geographic Information and Long-Term Remote Sensing to Characterize Urban Land Use Change. Remote Sens. 2019, 11, 2965. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI Analysis Using Local Climate Zones—A Comparison of 50 Cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M.; et al. WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 2018, 99, 1907–1924. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Mou, L.; Schmitt, M.; Zhu, X.X. Local Climate Zone-Based Urban Land Cover Classification from Multi-Seasonal Sentinel-2 Images with a Recurrent Residual Network. ISPRS J. Photogramm. Remote Sens. 2019, 154, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Keyport, R.N.; Oommen, T.; Martha, T.R.; Sajinkumar, K.S.; Gierke, J.S. A Comparative Analysis of Pixel- and Object-Based Detection of Landslides from Very High-Resolution Images. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 1–11. [Google Scholar] [CrossRef]
- Simanjuntak, R.M.; Kuffer, M.; Reckien, D. Object-Based Image Analysis to Map Local Climate Zones: The Case of Bandung, Indonesia. Appl. Geogr. 2019, 106, 108–121. [Google Scholar] [CrossRef]
- Rosentreter, J.; Hagensieker, R.; Waske, B. Towards Large-Scale Mapping of Local Climate Zones Using Multitemporal Sentinel 2 Data and Convolutional Neural Networks. Remote Sens. Environ. 2020, 237, 111472. [Google Scholar] [CrossRef]
- Qiu, C.; Schmitt, M.; Mou, L.; Ghamisi, P.; Zhu, X.X. Feature Importance Analysis for Local Climate Zone Classification Using a Residual Convolutional Neural Network with Multi-Source Datasets. Remote Sens. 2018, 10, 1572. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Tong, X.; Schmitt, M.; Bechtel, B.; Zhu, X.X. Multilevel Feature Fusion-Based CNN for Local Climate Zone Classification From Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2793–2806. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Verdonck, M.-L.; Okujeni, A.; van der Linden, S.; Demuzere, M.; De Wulf, R.; Van Coillie, F. Influence of Neighbourhood Information on ‘Local Climate Zone’ Mapping in Heterogeneous Cities. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 102–113. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Ma, A.; Filippi, A.; Wang, Z.; Yin, Z. Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks. Remote Sens. 2019, 11, 194. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2016, arXiv:1409.0473. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 637455. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2018, arXiv:1708.02002. [Google Scholar]
- Hay Chung, L.C.; Xie, J.; Ren, C. Improved machine-learning mapping of local climate zones in metropolitan areas using composite Earth observation data in Google Earth Engine. Build. Environ. 2021, 199, 107879. [Google Scholar] [CrossRef]
City | Guangzhou | Hong Kong | Shenzhen | Zhuhai | Tokyo | Singapore | Vancouver | New York |
---|---|---|---|---|---|---|---|---|
Date | 15 March 2021 | 12 March 2021 | 12 March 2021 | 15 March 2021 | 3 March 2021 | 25 April 2021 | 11 March 2021 | 3 March 2021 |
20 March 2021 | 15 March 2021 | 15 March 2021 | 20 March 2021 | 18 March 2021 | 29 March 2021 | 8 March 2021 | ||
25 March 2021 | 17 March 2021 | 17 March 2021 | 4 April 2021 | 23 March 2021 | 31 March 2021 | 11 March 2021 | ||
29 April 2021 | 20 March 2021 | 20 March 2021 | 24 April 2021 | 7 April 2021 | 5 April 2021 | 13 March 2021 | ||
25 March 2021 | 25 March 2021 | 4 May 2021 | 22 April 2021 | 13 April 2021 | 21 March 2021 | |||
27 March 2021 | 27 March 2021 | 9 May 2021 | 27 April 2021 | 15 April 2021 | 5 April 2021 | |||
11 April 2021 | 11 April 2021 | 14 May 2021 | 18 April 2021 | 20 April 2021 | ||||
21 April 2021 | 21 April 2021 | 20 April 2021 | 12 May 2021 | |||||
29 April 2021 | 29 April 2021 | 13 May 2021 | 15 May 2021 | |||||
11 May 2021 | 11 May 2021 | 17 May 2021 | ||||||
16 May 2021 | 16 May 2021 | 27 May 2021 | ||||||
Total | 4 | 11 | 11 | 7 | 6 | 1 | 9 | 11 |
Class | Guangzhou | Hong Kong | Shenzhen | Zhuhai | Tokyo | Singapore | Vancouver | New York | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | ||
LCZ-1 | 19 | 18 | 124 | 77 | 25 | 33 | 31 | 26 | 49 | 22 | 28 | 13 | 41 | 18 | 107 | 47 | 678 |
LCZ-2 | 22 | 10 | 28 | 29 | 69 | 59 | 16 | 12 | 46 | 20 | 168 | 73 | 19 | 9 | 127 | 55 | 762 |
LCZ-3 | 28 | 41 | 43 | 39 | 8 | 4 | 61 | 104 | 72 | 31 | 77 | 34 | 30 | 14 | 65 | 28 | 679 |
LCZ-4 | 17 | 41 | 52 | 23 | 19 | 22 | 45 | 51 | / | 248 | 107 | 23 | 10 | 6 | 3 | 667 | |
LCZ-5 | 15 | 21 | 25 | 11 | 22 | 17 | 32 | 17 | 35 | 15 | 24 | 11 | 27 | 12 | 23 | 10 | 317 |
LCZ-6 | 33 | 12 | 9 | 11 | 24 | 26 | 27 | 21 | 22 | 10 | 207 | 90 | 53 | 23 | 5 | 3 | 576 |
LCZ-7 | 6 | 7 | 9 | 8 | 9 | 8 | 41 | 61 | / | / | / | / | 149 | ||||
LCZ-8 | 72 | 61 | 25 | 7 | 22 | 16 | 68 | 42 | 68 | 30 | 193 | 83 | 129 | 56 | 67 | 30 | 969 |
LCZ-9 | 14 | 12 | 6 | 7 | 18 | 9 | 40 | 13 | / | 123 | 53 | / | / | 295 | |||
LCZ-10 | 36 | 41 | 19 | 15 | 35 | 39 | 16 | 17 | 13 | 6 | / | 40 | 18 | 20 | 9 | 324 | |
LCZ-A | 37 | 42 | 46 | 62 | 121 | 23 | 72 | 30 | 70 | 31 | 597 | 257 | 208 | 90 | 11 | 5 | 1702 |
LCZ-B | 9 | 8 | 21 | 5 | 7 | 9 | 8 | 7 | 28 | 12 | 324 | 139 | 168 | 72 | 3 | 2 | 822 |
LCZ-C | 5 | 6 | 6 | 4 | 70 | 32 | 32 | 27 | 14 | 6 | 197 | 85 | / | / | 484 | ||
LCZ-D | 10 | 6 | 34 | 22 | 21 | 14 | 12 | 14 | / | 150 | 65 | 17 | 8 | / | 373 | ||
LCZ-E | 64 | 37 | 48 | 89 | 112 | 78 | 16 | 12 | / | 64 | 28 | 156 | 68 | 74 | 32 | 878 | |
LCZ-F | 19 | 23 | 39 | 13 | 74 | 176 | 50 | 107 | 154 | 66 | 262 | 113 | 44 | 19 | 9 | 4 | 1172 |
LCZ-G | 114 | 331 | 201 | 249 | 271 | 120 | 199 | 62 | 227 | 98 | 683 | 293 | 625 | 268 | 60 | 26 | 3827 |
Total | 520 | 717 | 735 | 671 | 927 | 685 | 766 | 623 | 798 | 347 | 3345 | 1444 | 577 | 255 | 1580 | 685 | 14,675 |
Model | Kappa × 100 | OA (%) | AA (%) |
---|---|---|---|
ResNet_16 | 72.71 | 76.11 | 66.53 |
ResNet_24 | 75.9 | 78.87 | 71.82 |
ResNet_32 | 78.63 | 81.3 | 74.89 |
ResNet_40 | 80.31 | 82.75 | 77.35 |
ResNet_48 | 81.49 | 83.76 | 80.8 |
ResNet_56 | 83.19 | 85.26 | 81.85 |
ResNet_64 | 82.5 | 84.66 | 81.37 |
ResNet_72 | 82.77 | 84.92 | 80.92 |
Random Forest | 58.71 | 64.04 | 47.85 |
SVS | 85.96 | 87.72 | 82.06 |
Class | Guangzhou | Hong Kong | Shenzhen | Zhuhai | Tokyo | Singapore | Vancouver | New York | |
---|---|---|---|---|---|---|---|---|---|
F1-Score (%) | LCZ-1 | 85.00 | 86.30 | 82.14 | 94.74 | 100.00 | 42.86 | 97.87 | 100.00 |
LCZ-2 | 66.67 | 58.14 | 86.89 | 70.00 | 62.65 | 77.46 | 80.00 | 100.00 | |
LCZ-3 | 100.00 | 95.00 | 100.00 | 96.04 | 84.87 | 88.89 | 86.96 | 96.77 | |
LCZ-4 | 100.00 | 77.27 | 72.22 | 86.27 | / | 82.05 | 75.00 | / | |
LCZ-5 | 86.96 | 53.85 | 68.42 | 70.00 | 94.89 | / | 91.67 | 80.00 | |
LCZ-6 | 76.92 | 62.50 | 78.79 | 70.00 | 75.25 | 90.26 | 100.00 | / | |
LCZ-7 | 87.50 | 100.00 | 57.14 | 100.00 | / | / | / | / | |
LCZ-8 | 88.71 | 26.32 | 64.86 | 90.48 | 94.57 | 86.86 | 90.76 | 96.55 | |
LCZ-9 | 91.67 | 100.00 | 36.36 | 63.16 | / | 92.50 | / | / | |
LCZ-10 | 100.00 | 82.35 | 87.50 | 100.00 | 97.01 | / | 95.45 | 100.00 | |
LCZ-A | 100.00 | 98.04 | 93.62 | 100.00 | 100.00 | 96.12 | 100.00 | 80.00 | |
LCZ-B | 87.50 | 23.53 | 52.63 | 42.86 | 82.71 | 88.49 | 99.25 | / | |
LCZ-C | 26.67 | 66.67 | 72.94 | 89.29 | 76.29 | 94.96 | / | / | |
LCZ-D | 50.00 | 95.24 | 60.00 | 72.73 | / | 97.40 | 88.89 | / | |
LCZ-E | 83.33 | 97.40 | 79.50 | 22.22 | / | 82.35 | 94.74 | 94.92 | |
LCZ-F | 100.00 | 62.50 | 85.80 | 89.52 | 100.00 | 93.90 | 94.74 | 100.00 | |
LCZ-G | 99.70 | 100.00 | 99.58 | 100.00 | 99.61 | 99.83 | 99.82 | 99.10 | |
Kappa | 91.38 | 91.38 | 83.98 | 81.37 | 86.42 | 90.20 | 90.50 | 96.62 |
Name | Sequence Composition | Kappa × 100 | OA (%) | AA (%) |
---|---|---|---|---|
S1 | (*,16,24,32,40,48,56,64,72) | 85.96 | 87.71 | 82.06 |
S2 | (72,64,56,48,40,32,24,16,8) | 85.85 | 87.61 | 82.77 |
S3 | (24,32,40,48,56) | 84.52 | 86.46 | 83.38 |
S4 | (24,40,56) | 83.33 | 85.41 | 81.65 |
S5 | (56) | 82.19 | 83.25 | 80.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Q.; Li, H.; Gao, P.; Guo, H.; Zhong, C. Mapping Irregular Local Climate Zones from Sentinel-2 Images Using Deep Learning with Sequential Virtual Scenes. Remote Sens. 2022, 14, 5564. https://doi.org/10.3390/rs14215564
Yao Q, Li H, Gao P, Guo H, Zhong C. Mapping Irregular Local Climate Zones from Sentinel-2 Images Using Deep Learning with Sequential Virtual Scenes. Remote Sensing. 2022; 14(21):5564. https://doi.org/10.3390/rs14215564
Chicago/Turabian StyleYao, Qianxiang, Hui Li, Peng Gao, Haojia Guo, and Cheng Zhong. 2022. "Mapping Irregular Local Climate Zones from Sentinel-2 Images Using Deep Learning with Sequential Virtual Scenes" Remote Sensing 14, no. 21: 5564. https://doi.org/10.3390/rs14215564
APA StyleYao, Q., Li, H., Gao, P., Guo, H., & Zhong, C. (2022). Mapping Irregular Local Climate Zones from Sentinel-2 Images Using Deep Learning with Sequential Virtual Scenes. Remote Sensing, 14(21), 5564. https://doi.org/10.3390/rs14215564