Deformation and Volumetric Change in a Typical Retrogressive Thaw Slump in Permafrost Regions of the Central Tibetan Plateau, China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Site Description
2.2. Computation Module Description
2.2.1. Basic Discrete Element Module
2.2.2. Heat Conduction Module
2.2.3. Ground Ice Ablation Module
2.2.4. Thaw-Induced Bond Contact Model
2.3. Setup of Model and Parameters
2.3.1. Basal Zone Shear Test Model
2.3.2. Thaw-Induced Slope Failure Model
2.4. TLS-UAV Method
2.4.1. Terrestrial Laser Scanner Survey
2.4.2. Unmanned Aerial Vehicle Survey
3. Results
3.1. Shear Strength of the Ground Ice and Active Layer
3.2. Deformation and Volumetric Change Analysis
3.3. Comparisons between Geophysical Survey and Simulation
4. Discussion
4.1. Impact of the Ground Ice Content
4.2. Research Deficiencies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, L.; Ping, C.L.; Yang, D.; Cheng, G.; Ding, Y.; Liu, S. Changes of Climate and Seasonally Frozen Ground over the Past 30 Years in Qinghai–Xizang (Tibetan) Plateau, China. Glob. Planet. Change 2004, 43, 19–31. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G. Climate Warming over the Past Half Century Has Led to Thermal Degradation of Permafrost on the Qinghai–Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate Change and the Permafrost Carbon Feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Lewkowicz, A.G.; Way, R.G. Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, L.M.; Romanovsky, V.E.; Cable, W.L.; Walker, D.A.; Kokelj, S.V.; Nicolsky, D. Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophys. Res. Lett. 2019, 46, 6681–6689. [Google Scholar] [CrossRef] [Green Version]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; Mcguire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G.; Gao, Z. Abrupt Increase in Thermokarst Lakes on the Central Tibetan Plateau over the Last 50 Years. Catena 2022, 217, 106497. [Google Scholar] [CrossRef]
- Bernhard, P.; Zwieback, S.; Bergner, N.; Hajnsek, I. Assessing Volumetric Change Distributions and Scaling Relations of Retrogressive Thaw Slumps across the Arctic. Cryosphere 2022, 16, 1–15. [Google Scholar] [CrossRef]
- Niu, F.; Luo, J.; Lin, Z.; Fang, J.; Liu, M. Thaw-Induced Slope Failures and Stability Analyses in Permafrost Regions of the Qinghai-Tibet Plateau, China. Landslides 2016, 13, 55–65. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent Acceleration of Thaw Slumping in Permafrost Terrain of Qinghai-Tibet Plateau: An Example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Kokelj, S.; Kokoszka, J.; van der Sluijs, J.; Rudy, A.; Tunnicliffe, J.; Shakil, S.; Tank, S.; Zolkos, S. Thaw-Driven Mass Wasting Couples Slopes with Downstream Systems, and Effects Propagate through Arctic Drainage Networks. Cryosphere 2020, 15, 3059–3081. [Google Scholar] [CrossRef]
- Ramage, J.L.; Irrgang, A.M.; Morgenstern, A.; Lantuit, H. Increasing Coastal Slump Activity Impacts the Release of Sediment and Organic Carbon into the Arctic Ocean. Biogeosciences 2018, 15, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Keskitalo, K.H.; Bröder, L.; Shakil, S.; Zolkos, S.; Tank, S.E.; van Dongen, B.E.; Tesi, T.; Haghipour, N.; Eglinton, T.I.; Kokelj, S.V.; et al. Downstream Evolution of Particulate Organic Matter Composition from Permafrost Thaw Slumps. Front. Earth Sci. 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Lacelle, D.; Lantz, T.C.; Tunnicliffe, J.; Malone, L.; Clark, I.D.; Chin, K.S. Thawing of Massive Ground Ice in Mega Slumps Drives Increases in Stream Sediment and Solute Flux across a Range of Watershed Scales. J. Geophys. Res. Earth Surf. 2013, 118, 681–692. [Google Scholar] [CrossRef]
- Xia, Z.; Huang, L.; Fan, C.; Jia, S.; Lin, Z.; Liu, L.; Luo, J.; Niu, F.; Zhang, T. Retrogressive Thaw Slumps along the Qinghai–Tibet Engineering Corridor: A Comprehensive Inventory and Their Distribution Characteristics. Earth Syst. Sci. Data 2022, 14, 3875–3887. [Google Scholar] [CrossRef]
- Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Luoto, M. Degrading Permafrost Puts Arctic Infrastructure at Risk by Mid-Century. Nat. Commun. 2018, 9, 5147. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Gao, Z.; Fan, X.; Niu, F.; Luo, J.; Yin, G.; Liu, M. Factors Controlling near Surface Ground-Ice Characteristics in a Region of Warm Permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Geoderma 2020, 376, 114540. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Zhao, L.; Liang, Y.; Cheng, G. Qinghai-Tibet Plateau Wetting Reduces Permafrost Thermal Responses to Climate Warming. Earth Planet. Sci. Lett. 2021, 562, 116858. [Google Scholar] [CrossRef]
- Huang, L.; Luo, J.; Lin, Z.; Niu, F.; Liu, L. Using Deep Learning to Map Retrogressive Thaw Slumps in the Beiluhe Region (Tibetan Plateau) from CubeSat Images. Remote Sens. Environ. 2020, 237, 111534. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Luo, J.; Lin, Z.; Niu, F. Automatically Quantifying Evolution of Retrogressive Thaw Slumps in Beiluhe (Tibetan Plateau) from Multi-Temporal CubeSat Images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102399. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.M.; Chen, A.C.; Gusmeroli, A.; Zebker, H.A.; Zhang, T. Remote Sensing Measurements of Thermokarst Subsidence Using InSAR. J. Geophys. Res. Earth Surf. 2015, 120, 1935–1948. [Google Scholar] [CrossRef] [Green Version]
- Obu, J.; Lantuit, H.; Grosse, G.; Günther, F.; Sachs, T.; Helm, V.; Fritz, M. Coastal Erosion and Mass Wasting along the Canadian Beaufort Sea Based on Annual Airborne LiDAR Elevation Data. Geomorphology 2017, 293, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Zhang, T.; Chen, J.; Shang, J.; Wang, S.; Mu, C.; Fan, C. Seasonal Deformation Monitoring over Thermokarst Landforms Using Terrestrial Laser Scanning in Northeastern Qinghai-Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102501. [Google Scholar] [CrossRef]
- Zhao, L. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar]
- Niu, F.; Luo, J.; Lin, Z.; Ma, W.; Lu, J. Development and Thermal Regime of a Thaw Slump in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2012, 83–84, 131–138. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, F.; Liu, H.; Lu, J. Hydrothermal Processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2011, 65, 446–455. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, Q.; Cheng, Q.; Cai, F.; Su, Z. Solid-Liquid Interaction Caused by Minor Wetting in Gravel-Ice Mixtures: A Key Factor for the Mobility of Rock-Ice Avalanches. Eng. Geol. 2021, 286, 106072. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A Bonded-Particle Model for Rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Liu, C.; Shi, B.; Gu, K.; Zhang, T.; Tang, C.; Wang, Y.; Liu, S. Negative Pore Water Pressure in Aquitard Enhances Land Subsidence: Field, Laboratory and Numerical Evidence. Water Resour. Res. 2021, 57, 1–15. [Google Scholar] [CrossRef]
- Zhan, Q.; Wang, S.; Wang, L.; Guo, F.; Zhao, D.; Yan, J. Analysis of Failure Models and Deformation Evolution Process of Geological Hazards in Ganzhou City, China. Front. Earth Sci. 2021, 9, 731447. [Google Scholar] [CrossRef]
- Huang, M.; Zhan, J.W. Face Stability Assessment for Underwater Tunneling Across a Fault Zone. J. Perform. Constr. Facil. 2019, 33, 04019034. [Google Scholar] [CrossRef]
- Lin, Q. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights From Laboratory Experiments. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019296. [Google Scholar] [CrossRef]
- Chen, Z.; Song, D. Numerical Investigation of the Recent Chenhecun Landslide (Gansu, China) Using the Discrete Element Method. Nat. Hazards 2021, 105, 717–733. [Google Scholar] [CrossRef]
- Liu, C.; Shi, B.; Shao, Y.; Tang, C. Experimental and Numerical Investigation of the Effect of the Urban Heat Island on Slope Stability. Bull. Eng. Geol. Environ. 2013, 72, 303–310. [Google Scholar] [CrossRef]
- Liu, C.; Pollard, D.D.; Shi, B. Analytical Solutions and Numerical Tests of Elastic and Failure Behaviors of Close-Packed Lattice for Brittle Rocks and Crystals. J. Geophys. Res. Solid Earth 2013, 118, 71–82. [Google Scholar] [CrossRef]
- Khattari, Y.; El Rhafiki, T.; Choab, N.; Kousksou, T.; Alaphilippe, M.; Zeraouli, Y. Apparent Heat Capacity Method to Investigate Heat Transfer in a Composite Phase Change Material. J. Energy Storage 2020, 28, 101239. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Zhang, L. Physics of Permafrost; Chinese Sc.: Beijing, China, 2010. [Google Scholar]
- Sun, Z.; Zhao, L.; Hu, G.; Zhou, H.; Liu, S.; Qiao, Y.; Du, E.; Zou, D.; Xie, C. Numerical Simulation of Thaw Settlement and Permafrost Changes at Three Sites Along the Qinghai-Tibet Engineering Corridor in a Warming Climate. Geophys. Res. Lett. 2022, 49, e2021GL097334. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B.M.; Zhang, T.; Parsekian, A.D. Seasonal Thaw Settlement at Drained Thermokarst Lake Basins, Arctic Alaska. Cryosphere 2014, 8, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Schaefer, K.; Zhang, T.; Wahr, J. Estimating 1992–2000 Average Active Layer Thickness on the Alaskan North Slope from Remotely Sensed Surface Subsidence. J. Geophys. Res. Earth Surf. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Shen, Z.; Jiang, M.; Thornton, C. DEM Simulation of Bonded Granular Material. Part I: Contact Model and Application to Cemented Sand. Comput. Geotech. 2016, 75, 192–209. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, J.; Liang, W.; Niu, F. Multiscale Modeling of Coupled Thermo-Mechanical Behavior of Granular Media in Large Deformation and Flow. Comput. Geotech. 2022, 149, 104855. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, J.; Liu, C.; Shadabfar, M.; Zhang, J. Rock Fragmentation Induced by a TBM Disc-Cutter Considering the Effects of Joints: A Numerical Simulation by DEM. Comput. Geotech. 2021, 136, 104230. [Google Scholar] [CrossRef]
- Liu, C. Matrix Discrete Element Analysis of Geological and Geotechnical Engineering; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9789813345232. [Google Scholar]
- Calmels, F.; Clavano, W.R.; Froese, D.G. Progress on X-ray computed tomography (CT) scanning in permafrost studies. In Proceedings of the 5th Canadian Conference on Permafrost, Calgary, AB, Canada, 5–7 August 2010. [Google Scholar]
- Cheng, G. The Mechanism of Repeated-Segregation for the Formation of Thick Layered Ground Ice. Cold Reg. Sci. Technol. 1983, 8, 57–66. [Google Scholar] [CrossRef]
- Wang, B.; Paudel, B.; Li, H. Retrogression Characteristics of Landslides in Fine-Grained Permafrost Soils, Mackenzie Valley, Canada. Landslides 2009, 6, 121–127. [Google Scholar] [CrossRef]
Depth (m) | 0.5 | 1.5 | 1.9 | Ground Ice Layer |
---|---|---|---|---|
Young modulus, E (MPa) | 11.68 | 4.36 | 8.66 | 830 |
Poisson’s ratio | 0.12 | 0.19 | 0.16 | 0.14 |
Uniaxial tensile strength, σt (kPa) | - | 0.65 | 2 | 15.4 |
Uniaxial compressive strength, σc (kPa) | - | 11 | 20 | 66.5 |
Intergranular friction coefficient, μ | 0.68 | 0.55 | 0.62 | 0.2 |
Element density, ρ (kg/m3) | 1850 | 1950 | 2150 | 917 |
Properties and Parameters | Values |
---|---|
Soil | |
Density of solid grains | 2350 kg/m3 |
Thermal conductivity of soil (λw) | 1.48 W/m/K |
Specific heat of soil (cw) | 1041.5 J/kg/K |
Permafrost | |
Density of ice (ρi) | 910 kg/m3 |
Density of ice-rich permafrost (50–80%) | 1700 kg/m3 |
Thermal conductivity of ice (λi) | 2.14 W/m/K |
Thermal conductivity of ice-rich permafrost (50–80%) | 1.87 W/m/K |
Specific heat of ice (ci) | 2108 J/kg/K |
Specific heat of ice-rich permafrost (50–80%) | 1860 J/kg/K |
Latent heat (Lw) | 3.34 × 105 J/kg |
Others | |
Shape factor for unfrozen water content q | 3.0 |
Terminal fraction of moisture unfrozen p | 0.165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, C.; Niu, F.; He, P.; Ren, L.; Luo, J.; Shan, Y. Deformation and Volumetric Change in a Typical Retrogressive Thaw Slump in Permafrost Regions of the Central Tibetan Plateau, China. Remote Sens. 2022, 14, 5592. https://doi.org/10.3390/rs14215592
Jiao C, Niu F, He P, Ren L, Luo J, Shan Y. Deformation and Volumetric Change in a Typical Retrogressive Thaw Slump in Permafrost Regions of the Central Tibetan Plateau, China. Remote Sensing. 2022; 14(21):5592. https://doi.org/10.3390/rs14215592
Chicago/Turabian StyleJiao, Chenglong, Fujun Niu, Peifeng He, Lu Ren, Jing Luo, and Yi Shan. 2022. "Deformation and Volumetric Change in a Typical Retrogressive Thaw Slump in Permafrost Regions of the Central Tibetan Plateau, China" Remote Sensing 14, no. 21: 5592. https://doi.org/10.3390/rs14215592
APA StyleJiao, C., Niu, F., He, P., Ren, L., Luo, J., & Shan, Y. (2022). Deformation and Volumetric Change in a Typical Retrogressive Thaw Slump in Permafrost Regions of the Central Tibetan Plateau, China. Remote Sensing, 14(21), 5592. https://doi.org/10.3390/rs14215592