UAV-Based Multi-Temporal Thermal Imaging to Evaluate Wheat Drought Resistance in Different Deficit Irrigation Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. UAV Systems and Thermal Infrared Camera
2.3. Acquisition of UAV Thermal Images and RGB Images
2.4. UAV Thermal Images Processing
2.5. Acquisition of CT by A Handheld Thermal Infrared Analyzer
2.6. Physiological Parameters Measurements
2.6.1. Photosynthetic Data
2.6.2. SPAD and Leaf Area Index
2.6.3. Biomass and Yields
2.6.4. The Corresponding Days and Growth Stage after Sowing
2.7. Statistical Analysis
3. Results
3.1. Physiological and Yield Performance of Wheat under Different Water Treatments
3.2. The HCA Results Based on Physiological Traits and Yield
3.3. Canopy Temperature from Different Treatments and Multiple Growth Stages
3.4. The PCA of Physiological Traits and CT-UAV in Different Deficit Irrigation Treatments
3.5. The Evaluation of CT-UAV on Physiological Traits at Different Growth Stages
3.6. Evaluation of Drought Resistance Performance Based on Multi-stages CT-UAV
4. Discussion
4.1. The Different Clustering of Drought Resistance Performance in Different Water Deficits
4.2. Canopy Temperature Variation under Different Deficit Irrigation Treatments
4.3. CT-UAV in Relation to Ground-based Physiological Traits in Different Deficit Irrigations
4.4. Canopy Temperature Acquisition Stage for Drought Resistance Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, D.; Yu, Q.; Lu, C.; Hengsdijk, H. Quantifying production potentials of winter wheat in the North China Plain. Eur. J. Agron. 2006, 24, 226–235. [Google Scholar] [CrossRef]
- Zhai, Y.; Tan, X.; Ma, X.; An, M.; Zhao, Q.; Shen, X.; Hong, J. Water footprint analysis of wheat production. Ecol. Indic. 2019, 102, 95–102. [Google Scholar] [CrossRef]
- Liu, L.; Jingjie, Y.; Kendy, E. Groundwater Exploitation and Its Impact on the Environment in the North China Plain. Water Int. 2001, 26, 265–272. [Google Scholar] [CrossRef]
- Zhang, B.C.; Li, F.M.; Huang, G.B.; Cheng, Z.Y.; Zhang, Y.H. Yield performance of spring wheat improved by regulated deficit irrigation in an and area. Agric. Water Manag. 2006, 79, 28–42. [Google Scholar] [CrossRef]
- Ali, M.H.; Hoque, M.R.; Hassan, A.A.; Khair, A. Effects of deficit irrigation on yield, water productivity, and economic returns of wheat. Agric. Water Manag. 2007, 92, 151–161. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Shang, S.H.; Yang, P. Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate. Agric. Water Manag. 2017, 192, 33–44. [Google Scholar] [CrossRef]
- Musick, J.T.; Jones, O.R.; Stewart, B.A.; Dusek, D.A. Water-Yield Relationships for Irrigated and Dryland Wheat in the U. S. Southern Plains. 1994, 86, 980–986. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, L.; Liang, Y.L.; Hu, X.T.; Cai, H.J.; Gu, B.J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Liu, E.K.; Mei, X.R.; Yan, C.R.; Gong, D.Z.; Zhang, Y.Q. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag. 2016, 167, 75–85. [Google Scholar] [CrossRef]
- Morsy, S.M.; Elbasyoni, I.S.; Abdallah, A.M.; Baenziger, P.S. Imposing water deficit on modern and wild wheat collections to identify drought on photosynthetic c. J. Agron. Crop Sci. 2021, 208, 427–440. [Google Scholar] [CrossRef]
- Fischer, R.A.; Wood, J.T. Drought resistance in spring wheat cultivars. 3. Yield associations with morpho-physiological traits. Aust. J. Agric. Res. 1979, 30, 1001–1020. [Google Scholar] [CrossRef]
- El Hafid, R.; Smith, D.H.; Karrou, M.; Samir, K. Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment. Ann. Bot. 1998, 81, 363–370. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Siddique, K.H.M. Drought Stress in Wheat during Flowering and Grain-filling Periods. Crit. Rev. Plant Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Mohammadi, M. Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Aust. J. Crop Sci. 2011, 5, 138–146. [Google Scholar]
- Anderegg, J.; Aasen, H.; Perich, G.; Roth, L.; Walter, A.; Hund, A. Temporal trends in canopy temperature and greenness are potential indicators of late-season drought avoidance and functional stay-green in wheat. Field Crops Res. 2021, 274. [Google Scholar] [CrossRef]
- Pinter, P.J.; Zipoli, G.; Reginato, R.J.; Jackson, R.D.; Idso, S.B.; Hohman, J.P. Canopy temperature as an indicator of differential water-use and yield performance among wheat cultivars. Agric. Water Manag. 1990, 18, 35–48. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Zarco-Tejada, P.J.; Jimenez-Munoz, J.C.; Sobrino, J.A.; de Miguel, E.; Villalobos, F.J. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 2006, 136, 31–44. [Google Scholar] [CrossRef]
- Alves, I.; Pereira, L.S. Non-water-stressed baselines for irrigation scheduling with infrared thermometers: A new approach. Irrig. Sci. 2000, 19, 101–106. [Google Scholar] [CrossRef]
- Blad, B.L.; Rosenberg, N.J. Measurement of crop temperature by leaf thermocouple, infrared thermometry and remotely sensed thermal imagery. Agron. J. 1976, 68, 635–641. [Google Scholar] [CrossRef]
- Feng, B.L.; Yu, H.; Hu, Y.G.; Gao, X.L.; Gao, J.F.; Gao, D.L.; Zhang, S.W. The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiol. Plant. 2009, 31, 1229–1235. [Google Scholar] [CrossRef]
- Li, X.; Ingvordsen, C.H.; Weiss, M.; Rebetzke, G.J.; Condon, A.G.; James, R.A.; Richards, R.A. Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. J. Exp. Bot. 2019, 70, 4963–4974. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.; Zhang, J.X.; Nguyen, H.T. Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Res. 1999, 64, 287–291. [Google Scholar] [CrossRef]
- Balota, M.; Payne, W.A.; Evett, S.R.; Lazar, M.D. Canopy temperature depression sampling to assess grain yield and genotypic differentiation in winter wheat. Crop Sci. 2007, 47, 1518–1529. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Cen, H.Y.; Zhu, J.P.; Zhang, J.F.; Zhu, Y.M.; Sun, D.W.; Du, X.Y.; Zhai, L.; Weng, H.Y.; Li, Y.J.; et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.J.; Dai, H.Y.; Xu, B.; Yang, H.; Feng, H.K.; Li, Z.H.; Yang, X.D. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.L.; Liu, S.Y.; Baret, F.; Hemerle, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Sepulcre-Canto, G.; Fereres, E.; Villalobos, F. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 2009, 113, 2380–2388. [Google Scholar] [CrossRef]
- Guo, A.T.; Huang, W.J.; Dong, Y.Y.; Ye, H.C.; Ma, H.Q.; Liu, B.; Wu, W.B.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [Google Scholar] [CrossRef]
- Wang, F.L.; Yang, M.; Ma, L.F.; Zhang, T.; Qin, W.L.; Li, W.; Zhang, Y.H.; Sun, Z.C.; Wang, Z.M.; Li, F.; et al. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Miller, A.J.; Kwasniewski, M. Leveraging Very-High Spatial Resolution Hyperspectral and Thermal UAV Imageries for Characterizing Diurnal Indicators of Grapevine Physiology. Remote Sens. 2020, 12, 3216. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Eblimit, K.; Peterson, K.; Hartling, S.; Esposito, F.; Khanal, K.; Newcomb, M.; Pauli, D.; et al. UAV-Based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap Cameras. Remote Sens. 2019, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolas, E.; Nortes, P.A.; Alarcon, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; Hernández-Montes, E.; O’Connell, M. Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV). Remote Sens. 2017, 9, 828. [Google Scholar] [CrossRef] [Green Version]
- Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 1681. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; Farias, J.R.B. UAV-based thermal imaging in the assessment of water status of soybean plants. Int. J. Remote Sens. 2019, 41, 3243–3265. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- Hou, M.J.; Tian, F.; Ortega-Farias, S.; Riveros-Burgos, C.; Zhang, T.; Lin, A.W. Estimation of crop transpiration and its scale effect based on ground and UAV thermal infrared remote sensing images. Eur. J. Agron. 2021, 131, 126389. [Google Scholar] [CrossRef]
- Jin, H.X.; Koppl, C.J.; Fischer, B.M.C.; Rojas-Conejo, J.; Johnson, M.S.; Morillas, L.; Lyon, S.W.; Duran-Quesada, A.M.; Suarez-Serrano, A.; Manzoni, S.; et al. Drone-Based Hyperspectral and Thermal Imagery for Quantifying Upland Rice Productivity and Water Use Efficiency after Biochar Application. Remote Sens. 2021, 13, 1866. [Google Scholar] [CrossRef]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. Evaluation of water status of wheat genotypes to aid prediction of yield on sodic soils using UAV-thermal imaging and machine learning. Agric. For. Meteorol. 2021, 307, 108477. [Google Scholar] [CrossRef]
- Gomez-Candon, D.; Torres-Sanchez, J.; Labbe, S.; Jolivot, A.; Martinez, S.; Regnard, J.L. Water stress assessment at tree scale: High-resolution thermal UAV imagery acquisition and processing. In Proceedings of the 8th International Symposium on Irrigation of Horticultural Crops, Lleida, Spain, 8–11 June 2015; pp. 159–165. [Google Scholar]
- Chang, A.; Jung, J.; Maeda, M.M.; Landivar, J.A.; Carvalho, H.D.R.; Yeom, J. Measurement of Cotton Canopy Temperature Using Radiometric Thermal Sensor Mounted on the Unmanned Aerial Vehicle (UAV). J. Sens. 2020, 2020, 8899325. [Google Scholar] [CrossRef]
- Sankey, T.; Hultine, K.; Blasini, D.; Koepke, D.; Bransky, N.; Grady, K.; Cooper, H.; Gehring, C.; Allan, G. UAV thermal image detects genetic trait differences among populations and genotypes of Fremont cottonwood (Populus fremontii, Salicaceae). Remote Sens. Ecol. Conserv. 2021, 7, 245–258. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, J.F.; Ye, H.; Ali, M.L.; Nguyen, H.T.; Chen, P.Y. Classification of soybean leaf wilting due to drought stress using UAV-based imagery. Comput. Electron. Agric. 2020, 175, 105576. [Google Scholar] [CrossRef]
- Das, S.; Christopher, J.; Apan, A.; Roy Choudhury, M.; Chapman, S.; Menzies, N.W.; Dang, Y.P. UAV-Thermal imaging and agglomerative hierarchical clustering techniques to evaluate and rank physiological performance of wheat genotypes on sodic soil. ISPRS J. Photogramm. Remote Sens. 2021, 173, 221–237. [Google Scholar] [CrossRef]
- Kim, D.-W.; Yun, H.; Jeong, S.-J.; Kwon, Y.-S.; Kim, S.-G.; Lee, W.; Kim, H.-J. Modeling and Testing of Growth Status for Chinese Cabbage and White Radish with UAV-Based RGB Imagery. Remote Sens. 2018, 10, 563. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.H.; Fu, Y.H.; Chen, S.Z.; Bryant, C.R.; Li, X.X.; Senthilnath, J.; Sun, H.Y.; Wang, S.X.; Wu, Z.F.; de Beurs, K. Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102435. [Google Scholar] [CrossRef]
- Ma, L.F.; Hu, N.Y.; Li, W.; Qin, W.L.; Huang, S.B.; Wang, Z.M.; Li, F.; Yu, K. Using multispectral drone data to monitor maize’s response to various irrigation modes. J. Plant Nutr. Fertil. 2022, 28, 743. [Google Scholar] [CrossRef]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Bridges, C.C. Hierarchical Cluster Analysis. Psychol. Rep. 1966, 18, 851–854. [Google Scholar] [CrossRef]
- Lima, D.C.; Santos, A.M.P.d.; Araujo, R.G.O.; Scarminio, I.S.; Bruns, R.E.; Ferreira, S.L.C. Principal component analysis and hierarchical cluster analysis for homogeneity evaluation during the preparation of a wheat flour laboratory reference material for inorganic analysis. Microchem. J. 2010, 95, 222–226. [Google Scholar] [CrossRef]
- Brodrick, R.; Bange, M.P.; Milroy, S.P.; Hammer, G.L. Physiological determinants of high yielding ultra-narrow row cotton: Canopy development and radiation use efficiency. Field Crops Res. 2013, 148, 86–94. [Google Scholar] [CrossRef]
- Liu, X.; Jin, H.; Wang, G.H.; Herbert, S.J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Barutcular, C.; El Sabagh, A.; Koc, M.; Ratnasekera, D. Relationships between Grain Yield and Physiological Traits of Durum Wheat Varieties under Drought and High Temperature Stress in Mediterranean Environments. Fresenius Environ. Bull. 2017, 26, 4282–4291. [Google Scholar]
- Sui, N.; Li, M.; Meng, Q.W.; Tian, J.C.; Zhao, S.J. Photosynthetic Characteristics of a Super High Yield Cultivar of Winter Wheat During Late Growth Period. Agric. Sci. China 2010, 9, 346–354. [Google Scholar] [CrossRef]
- Griffiths, C.A.; Reynolds, M.P.; Paul, M.J. Combining yield potential and drought resilience in a spring wheat diversity panel. Food Energy Secur. 2020, 9, e241. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, S.K.; Al-Suhaibani, N.A.; Al-Gaadi, K.; Rehman, S.U. Capability of Multiple Selection Criteria to Evaluate Contrasting Spring Wheat Germplasms under Arid Conditions. Pak. J. Bot. 2015, 47, 2093–2105. [Google Scholar]
- Khannachopra, R.; Rao, P.S.S.; Maheswari, M.; Xiaobing, L.; Shivshankar, K.S. Effect of water-deficit on accumulation of dry-matter, carbon and nitrogen in the kernel of wheat genotypes differing in yield stability. Ann. Bot. 1994, 74, 503–511. [Google Scholar] [CrossRef]
- Shao, H.B.; Liang, Z.S.; Shao, M.A. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf. B-Biointerfaces 2006, 47, 132–139. [Google Scholar] [CrossRef]
- Zivcak, M.; Repkova, J.; Olsovska, K.; Brestic, M. Osmotic Adjustment in Winter Wheat Varieties and Its Importance as a Mechanism of Drought Tolerance. Cereal Res. Commun. 2009, 37, 569–572. [Google Scholar]
- Zheng, Z.; Cai, H.; Hoogenboom, G.; Chaves, B.; Yu, L. Limited Irrigation for Improving Water Use Efficiency of Winter Wheat in the Guanzhong Plain of Northwest China. Trans. ASABE 2016, 59, 1841–1852. [Google Scholar] [CrossRef]
- Senapati, N.; Stratonovitch, P.; Paul, M.J.; Semenov, M.A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 2019, 70, 2549–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.Q.; Zhang, Q.; Sun, P.; Song, C.Q. Impact of Droughts on Winter Wheat Yield in Different Growth Stages during 2001-2016 in Eastern China. Int. J. Disaster Risk Sci. 2018, 9, 376–391. [Google Scholar] [CrossRef] [Green Version]
- Jatoi, W.; Baloch, M.; Kumbhar, M.; Khan, N.; Kerio, M.J.S.J.A. Effect of water stress on physiological and yield parameters at anthesis stage in elite spring wheat cultivars. Sarhad J. Agric. 2011, 27, 59–65. [Google Scholar]
- Balla, K.; Rakszegi, M.; Li, Z.G.; Bekes, F.; Bencze, S.; Veisz, O. Quality of Winter Wheat in Relation to Heat and Drought Shock after Anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef]
- Dhanda, S.S.; Sethi, G.S. Tolerance to drought stress among selected Indian wheat cultivars. J. Agric. Sci. 2002, 139, 319–326. [Google Scholar] [CrossRef]
- Tanner, C.B. Plant temperatures. Agron. J. 1963, 55, 210–211. [Google Scholar] [CrossRef]
- Zhang, T.; Hou, M.J.; Liu, L.; Tian, F. Estimation of transpiration and canopy cover of winter wheat under different fertilization levels using thermal infrared and visible imagery. Comput. Electron. Agric. 2019, 165, 104936. [Google Scholar] [CrossRef]
- Oweis, T.; Zhang, H.P.; Pala, M. Water use efficiency of rainfed and irrigated bread wheat in a mediterranean environment. Agron. J. 2000, 92, 231–238. [Google Scholar] [CrossRef]
- Shang, Y.Q.; Lin, X.; Li, P.; Gu, S.B.; Lei, K.Y.; Wang, S.; Hu, X.H.; Zhao, P.P.; Wang, D. Effects of supplemental irrigation at the jointing stage on population dynamics, grain yield, and water-use efficiency of two different spike-type wheat cultivars. PLoS ONE 2020, 15, e0230484. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Zia, S.; Spreer, W.; Sanchez, C.; Cairns, J.; Araus, J.L.; Muller, J. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comput. Electron. Agric. 2011, 79, 67–74. [Google Scholar] [CrossRef]
- Ozer, S.; Ahi, Y. Crop Water Stress Assesment of Drip Irrigated Summer Squash (Cucurbita pepo L.). Fresenius Environ. Bull. 2020, 29, 4320–4327. [Google Scholar]
- Kumar, A.; Tripathi, R.P. Relationships between Leaf Water Potential, Canopy Temperature and Transpiration in Irrigated and Nonirrigated Wheat. J. Agron. Crop Sci.-Z. Fur Acker Pflanzenbau 1991, 166, 19–23. [Google Scholar] [CrossRef]
- Li, D.X.; Zhang, D.; Wang, H.G.; Li, H.R.; Fang, Q.; Li, H.Y.; Li, R.Q. Optimized Planting Density Maintains High Wheat Yield Under Limiting Irrigation in North China Plain. Int. J. Plant Prod. 2020, 14, 107–117. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, Y.H.; Ji, W.; Yu, P.; Wang, B.; Li, J.P.; Han, M.K.; Xu, X.X.; Wang, Z.M. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions. PLoS ONE 2016, 11, e0158439. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.K.; Yu, Z.W.; Shi, Y.; Guo, P.W.; Wang, Y.Q. Effect of different supplemental irrigation strategies on photosynthetic characteristics and water use efficiency of wheat. Chil. J. Agric. Res. 2017, 77, 346–354. [Google Scholar] [CrossRef]
- Hafsi, M.; Mechmeche, W.; Bouamama, L.; Djekoune, A.; Zaharieva, M.; Monneveux, P. Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J. Agron. Crop Sci. 2000, 185, 275–280. [Google Scholar] [CrossRef]
- Itam, M.; Mega, R.; Tadano, S.; Abdelrahman, M.; Matsunaga, S.; Yamasaki, Y.; Akashi, K.; Tsujimoto, H. Metabolic and physiological responses to progressive drought stress in bread wheat. Sci. Rep. 2020, 10, 17189. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Mohammadi, M.; Ghaffaripour, S.; Karimpour, F.; Shefazadeh, M.K. Evaluation of physiological screening techniques for drought-resistant breeding of durum wheat genotypes in Iran. Afr. J. Biotechnol. 2011, 10, 12107–12117. [Google Scholar]
- Sharma, K.D.; Kumar, A. Genotypic variation for agro-physiological traits and their utilization as screening indices for drought tolerance in wheat. Indian J. Genet. Plant Breed. 2010, 70, 1–5. [Google Scholar]
- Raina, S.K.; Rane, J.; Raskar, N.; Singh, A.K.; Govindasamy, V.; Kumar, M.; Ekatpure, S.C.; Minhas, P.S. Physiological traits reveal potential for identification of drought tolerant mungbean Vigna radiata (L.) Wilczek genotypes under moderate soil-moisture deficit. Indian J. Genet. Plant Breed. 2019, 79, 427–437. [Google Scholar] [CrossRef]
- Moayedi, A.A.; Nasrulhaq-Boyce, A.; Tavakoli, H. Application of physiological and biochemical indices for screening and assessment of drought tolerance in durum wheat genotypes. Aust. J. Crop Sci. 2011, 5, 1014–1018. [Google Scholar]
- Liang, X.; Liu, Y.; Chen, J.; Adams, C. Late-season photosynthetic rate and senescence were associated with grain yield in winter wheat of diverse origins. J. Agron. Crop Sci. 2017, 204, 1–12. [Google Scholar] [CrossRef]
- Bokshi, A.I.; Thistlethwaite, R.J.; Chaplin, E.D.; Kirii, E.; Trethowan, R.M.; Tan, D.K.Y. Physiological traits for evaluating heat-tolerance of Australian spring wheat cultivars at elevated CO2. J. Agron. Crop Sci. 2022, 208, 178–196. [Google Scholar] [CrossRef]
- Sanna, F.; Franca, A.; Porqueddu, C.; Piluzza, G.; Re, G.A.; Sulas, L.; Bullitta, S. Characterization of native perennial ryegrasses for persistence in mediterranean rainfed conditions. Span. J. Agric. Res. 2014, 12, 1110. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Xue, Q.W.; Jessup, K.E.; Rudd, J.C.; Liu, S.Y.; Pradhan, G.P.; Devkota, R.N.; Baker, J. More Recent Wheat Cultivars Extract More Water from Greater Soil Profile Depths to Increase Yield in the Texas High Plains. Agron. J. 2017, 109, 2771–2780. [Google Scholar] [CrossRef]
- Thapa, S.; Jessup, K.E.; Pradhan, G.P.; Rudd, J.C.; Liu, S.; Mahan, J.R.; Devkota, R.N.; Baker, J.A.; Xue, Q. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Res. 2018, 217, 11–19. [Google Scholar] [CrossRef]
- Reddy, S.K.; Liu, S.Y.; Rudd, J.C.; Xue, Q.W.; Payton, P.; Finlayson, S.A.; Mahan, J.; Akhunova, A.; Holalu, S.V.; Lu, N.Y. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. J. Plant Physiol. 2014, 171, 1289–1298. [Google Scholar] [CrossRef] [Green Version]
- Ninou, E.; Tsialtas, J.T.; Dordas, C.A.; Papakosta, D.K. Effect of irrigation on the relationships between leaf gas exchange related traits and yield in dwarf dry bean grown under Mediterranean conditions. Agric. Water Manag. 2013, 116, 235–241. [Google Scholar] [CrossRef]
Sampling or Measuring Date | The Days after Sowing (DAS) | Growth Stages |
---|---|---|
5 May 2020 | 202 days | Flowering |
11 May 2020 | 208 days | 6 days after flowering |
20 May 2020 | 217 days | Early stage of grain-filling |
25 May 2020 | 222 days | Middle stage of grain-filling |
2 June 2020 | 230 days | Late stage of grain-filling |
7 June 2020 | 235 days | Ripe stage, W0 |
9 June 2020 | 237 days | Ripe stage, W1 |
12 June 2020 | 240 days | Ripe stage, W2 |
Physiological Traits | Treatment | n | 5 May | 11 May | 20 May | 25 May | 2 June |
---|---|---|---|---|---|---|---|
SPAD | W0 | 20 | 52.3 b | 50.4 b | 47.8 b | 45.5 b | 10.7 c |
W1 | 20 | 54.2 a | 53.3 a | 52.8 a | 48.5 a | 22.1 b | |
W2 | 20 | 54.6 a | 54.3 a | 54.4 a | 51.5 a | 31.4 a | |
LAI | W0 | 20 | 4.7 b | 4.5 b | 3.6 c | 3.1 c | 2.7 c |
W1 | 20 | 6.5 a | 5.5 a | 4.5 b | 3.8 b | 3.2 b | |
W2 | 20 | 7.1 a | 6.2 a | 5.0 a | 4.2 a | 3.7 a | |
Pn (μmol CO2·m−2·s−1) | W0 | 20 | - | 17.3 b | 11.4 c | - | - |
W1 | 20 | - | 19.7 a | 13.9 b | - | - | |
W2 | 20 | - | 20.7 a | 15.6 a | - | - | |
Tr (mmol H2O·m−2·s−1) | W0 | 20 | - | 2.73 b | 2.21 c | - | - |
W1 | 20 | - | 2.82 ab | 2.64 b | - | - | |
W2 | 20 | - | 3.09 a | 3.63 a | - | - | |
Cn (mmol H2O·m−2·s−1) | W0 | 20 | - | 0.153 b | 0.099 c | - | - |
W1 | 20 | - | 0.160 b | 0.156 b | - | - | |
W2 | 20 | - | 0.227 a | 0.208 a | - | - |
Varieties | Treatment | Yield (kg/ha−1) | Varieties | Treatment | Yield (kg/ha−1) |
---|---|---|---|---|---|
GY2018 | W0 | 6017.0 c | ND3636 | W0 | 5871.9 c |
W1 | 7261.4 b | W1 | 7088.0 b | ||
W2 | 7788.4 a | W2 | 7568.4 a | ||
G35 | W0 | 6520.5 c | H4399 | W0 | 6315.3 c |
W1 | 7352.0 b | W1 | 7877.2 b | ||
W2 | 7917.8 a | W2 | 8784.6 a | ||
GY5766 | W0 | 6825.8 c | SN086 | W0 | 5973.6 c |
W1 | 7170.9 b | W1 | 7840.1 b | ||
W2 | 7840.1 a | W2 | 8481.8 a | ||
SM22 | W0 | 6629.3 c | JM418 | W0 | 7103.8 c |
W1 | 7657.3 b | W1 | 8150.6 b | ||
W2 | 8573.0 a | W2 | 9030.4 a | ||
ZM1062 | W0 | 7045.0 c | C6005 | W0 | 6779.3 c |
W1 | 7538.4 b | W1 | 7452.0 b | ||
W2 | 8211.0 a | W2 | 8573.0 a |
Treatment | Group | The Average Yield (kg/ha−1) | Varieties |
---|---|---|---|
W0 | High | 6970.3 a | JM418, ZM1062, C6005, GY5766 |
Moderate | 6488.3 b | SM22, G35, H4399 | |
low | 5954.2 c | GY2018, SN086, ND3636 | |
W1 | High | 7956.0 a | JM418, H4399, SN086 |
Moderate | 7532.5 b | SM22, ZM1062, C6005 | |
low | 7218.1 c | G35, GY2018, GY5766, ND3636 | |
W2 | High | 8907.5 a | JM418, H4399 |
Moderate | 8421.9 b | SN086, ZM1062, C6005 | |
low | 7822.0 c | SM22, G35, GY2018, GY5766, ND3636 |
Physiological Traits | Treatment | 5 May | 11 May | 20 May | 25 May | 2 June |
---|---|---|---|---|---|---|
W0 | 0.41 ** | 0.53 *** | 0.50 *** | 0.51 *** | 0.79 *** | |
SPAD | W1 | 0.28 * | 0.46 ** | 0.49 *** | 0.56 *** | 0.72 *** |
W2 | 0.01 | 0.05 | 0.00 | 0.00 | 0.05 | |
W0 | 0.41 ** | 0.60 *** | 0.64 *** | 0.50 *** | 0.72 *** | |
LAI | W1 | 0.22 * | 0.28 * | 0.65 *** | 0.54 *** | 0.68 *** |
W2 | 0.13 | 0.01 | 0.03 | 0.00 | 0.07 | |
W0 | - | 0.48 *** | 0.68 *** | - | - | |
Pn (μmol CO2·m−2·s−1) | W1 | - | 0.35 ** | 0.58 *** | - | - |
W2 | - | 0.03 | 0.18 | - | - | |
W0 | - | 0.44 ** | 0.66 *** | - | - | |
Tr (mmol H2O·m−2·s−1) | W1 | - | 0.40 ** | 0.58 *** | - | - |
W2 | - | 0.03 | 0.25 * | - | - | |
W0 | - | 0.41 ** | 0.71 *** | - | - | |
Cn (mmol H2O·m−2·s−1) | W1 | - | 0.28 * | 0.60 *** | - | - |
W2 | - | 0.01 | 0.24 * | - | - | |
W0 | 0.42 *** | 0.43 *** | 0.47 *** | 0.60 *** | 0.62 *** | |
Biomass (ton/ha−1) | W1 | 0.43 ** | 0.37 ** | 0.45 ** | 0.32 ** | 0.42 ** |
W2 | 0.19 | 0.00 | 0.01 | 0.08 | 0.65 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, W.; Wang, J.; Ma, L.; Wang, F.; Hu, N.; Yang, X.; Xiao, Y.; Zhang, Y.; Sun, Z.; Wang, Z.; et al. UAV-Based Multi-Temporal Thermal Imaging to Evaluate Wheat Drought Resistance in Different Deficit Irrigation Regimes. Remote Sens. 2022, 14, 5608. https://doi.org/10.3390/rs14215608
Qin W, Wang J, Ma L, Wang F, Hu N, Yang X, Xiao Y, Zhang Y, Sun Z, Wang Z, et al. UAV-Based Multi-Temporal Thermal Imaging to Evaluate Wheat Drought Resistance in Different Deficit Irrigation Regimes. Remote Sensing. 2022; 14(21):5608. https://doi.org/10.3390/rs14215608
Chicago/Turabian StyleQin, Weilong, Jian Wang, Longfei Ma, Falv Wang, Naiyue Hu, Xianyue Yang, Yiyang Xiao, Yinghua Zhang, Zhencai Sun, Zhimin Wang, and et al. 2022. "UAV-Based Multi-Temporal Thermal Imaging to Evaluate Wheat Drought Resistance in Different Deficit Irrigation Regimes" Remote Sensing 14, no. 21: 5608. https://doi.org/10.3390/rs14215608
APA StyleQin, W., Wang, J., Ma, L., Wang, F., Hu, N., Yang, X., Xiao, Y., Zhang, Y., Sun, Z., Wang, Z., & Yu, K. (2022). UAV-Based Multi-Temporal Thermal Imaging to Evaluate Wheat Drought Resistance in Different Deficit Irrigation Regimes. Remote Sensing, 14(21), 5608. https://doi.org/10.3390/rs14215608