Modelling Permafrost Characteristics and Its Relationship with Environmental Constraints in the Gaize Area, Qinghai-Tibet Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Augmented Noah LSM
2.3. Forcing Data Downscaled by MicroMet
2.4. Validation of Forcing Data
2.5. Modelling the Permafrost Characteristics of the Gaize
2.5.1. Soil Parameter Scheme
2.5.2. Thermal Roughness Parameter Scheme
2.5.3. Vegetation Parameter Scheme
2.5.4. Deep Soil Temperature (DST) Setting
3. Results
3.1. Borehole Validation
3.2. MAGT, ALT and GIC Distribution
3.3. Permafrost and ALT Classification
3.4. Permafrost Distribution Map
4. Discussion
4.1. Modelling Resolution and Parameter Schemes
4.2. Permafrost Characteristics and Vegetation in the Gaize
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev. 2015, 2, 100–160. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, K.M.; Lettenmaier, D.; Mosbrugger, V. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.; Che, J.; Sheng, Y.; Wu, Q.; Jin, H.; Luo, D.; Tang, Z. Mapping the permafrost stability on the Tibetan plateau for 2005–2015. Sci. China Earth Sci. 2021, 64, 62–79. [Google Scholar] [CrossRef]
- Eliseev, A.V.; Demchenko, P.F.; Arzhanov, M.M.; Mokhov, I.I. Transient hysteresis of near-surface permafrost response to external forcing. Clim. Dyn. 2014, 42, 1203–1215. [Google Scholar] [CrossRef]
- Stendel, M.; Christensen, J.H. Impact of global warming on permafrost conditions in a coupled gcm. Geophys. Res. Lett. 2002, 29, 10-11–10-14. [Google Scholar] [CrossRef] [Green Version]
- Riseborough, D.; Shiklomanov, N.; Etzelmüller, B.; Gruber, S.; Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 2008, 19, 137–156. [Google Scholar] [CrossRef]
- Cheng, G.D. Problems on zonation of high-altitude permafrost. Acta Geograph. Sin. 1984, 39, 185–193. [Google Scholar]
- Smith, M.W.; Riseborough, D.W. Climate and the limits of permafrost: A zonal analysis. Permafr. Periglac. Process. 2002, 13, 1–15. [Google Scholar] [CrossRef]
- Gądek, B.; Leszkiewicz, J. Influence of snow cover on ground surface temperature in the zone of sporadic permafrost, tatra mountains, poland and slovakia. Cold Reg. Sci. Technol. 2010, 60, 205–211. [Google Scholar] [CrossRef]
- Yuan, L.; Rui, S.; Liu, S.M. Vegetation physiological parameter setting in the simple biosphere model 2(sib2) for alpine meadows in the upper reaches of Heihe River. Sci. China Earth Sci. 2015, 58, 755–769. [Google Scholar]
- Baumann, F.; Schmidt, K.; Dörfer, C.; He, J.S.; Scholten, T.; Kühn, P. Pedogenesis, permafrost, substrate and topography: Plot and landscape scale interrelations of weathering processes on the central-eastern Tibetan plateau. Geoderma 2014, 226, 300–316. [Google Scholar] [CrossRef]
- Rödder, T.; Kneisel, C. Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 2012, 175–176, 176–189. [Google Scholar] [CrossRef]
- Ishikawa, M.; Sharkhuu, N.; Zhang, Y.; Kadota, T.; Ohata, T. Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, mongolia. Permafr. Periglac. Process. 2005, 16, 209–216. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.; Dai, Y.J.; Li, R.; Pang, Q.Q. Representing permafrost properties in colm for the Qinghai-Xizang (Tibetan) plateau. Cold Reg. Sci. Technol. 2013, 87, 68–77. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; Cheng, G.; Li, S.; Zhang, W. Active layer thickness calculation over the Qinghai-Tibet plateau. Cold Reg. Sci. Technol. 2009, 57, 23–28. [Google Scholar] [CrossRef]
- Wu, Q.B.; Zhang, T.J.; Liu, Y.Z. Permafrost temperatures and thickness on the Qinghai-Tibet plateau. Glob. Planet. Chang. 2010, 72, 32–38. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, S.; Qing, B.; Wang, Y. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet plateau. Sci. China 2006, 49, 1156–1169. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Wu, Q.; Sheng, Y.; Zou, D. Brief communication: Evaluation and inter-comparisons of Qinghai-Tibet plateau permafrost maps based on a new inventory of field evidence. Cryosphere 2019, 13, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Kim, Y.; Kimball, J.S. Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens. Environ. 2016, 175, 349–358. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, G.J.; Zou, D.F.; Wu, X.D.; Ma, L.; Sun, Z.; Yuan, L.M.; Zhou, H.Y.; Liu, S.B. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet plateau. Bull. Chin. Acad. Sci. 2019, 34, 1233–1246. [Google Scholar]
- Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B. Airborne electromagnetic imaging of discontinuous permafrost. Geophys. Res. Lett. 2012, 39, L02503–L02510. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sheng, Y.; Chen, J.; Wu, J.; Wang, S. Variations in permafrost temperature and stability of alpine meadows in the source area of the datong river, northeastern Qinghai-Tibet plateau, China. Permafr. Periglac. 2014, 25, 307–319. [Google Scholar] [CrossRef]
- Qin, Y.; Yi, S.; Chen, J.; Ren, S.; Ding, Y. Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau. Ecol. Eng. 2015, 74, 351–355. [Google Scholar] [CrossRef]
- Niu, F.; Gao, Z.; Lin, Z.; Luo, J.; Fan, X. Vegetation influence on the soil hydrological regime in permafrost regions of the Qinghai-Tibet plateau, China. Geoderma 2019, 354, 113892. [Google Scholar] [CrossRef]
- Lin, Z.; Burn, C.R.; Niu, F.; Luo, J.; Liu, M.; Yin, G. The Thermal Regime, including a Reversed Thermal Offset, of Arid Permafrost Sites with Variations in Vegetation Cover Density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafr. Periglac. Process. 2015, 26, 142–159. [Google Scholar] [CrossRef]
- Chen, R.; Yang, M.X.; Wang, X.J.; Wan, G.N. Review on simulation of land-surface processes on the Tibetan plateau. Sci. Cold Arid. Reg. 2019, 11, 93–115. [Google Scholar]
- Wu, X.; Nan, Z.; Zhao, S.; Zhao, L.; Cheng, G. Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet plateau. Permafr. Periglac. Process. 2018, 29, 86–99. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Yin, Z.; Zhao, L. Isolating the contributions of seasonal climate warming to permafrost thermal responses over the Qinghai-Tibet plateau. J. Geophys. Res. Atmos. 2021, 126, e2021JD035218. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Wu, X.; Ji, H.; Zhao, S. The role of winter warming in permafrost change over the Qinghai-Tibet plateau. Geophys. Res. Lett. 2019, 46, 11261–11269. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zheng, D.; Liu, S.; Xu, Z.; Xu, T.; Zheng, H.; Yang, X. Assessment and improvement of noah-mp for simulating water and heat exchange over alpine grassland in growing season. Sci. China Earth Sci. 2022, 65, 536–552. [Google Scholar] [CrossRef]
- Chang, Y.; Ding, Y.; Zhao, Q.; Qin, J.; Zhang, S. Optimization of canopy resistance models for alpine meadow in the northeastern Tibetan plateau. J. Hydrol. 2022, 610, 128007. [Google Scholar] [CrossRef]
- Yang, K. High Spatial and Temporal Resolution Surface Meteorological Element Driven Dataset in China (1979–2015). National Cryosphere Desert Data Center. 2020. Available online: www.ncdc.ac.cn (accessed on 10 May 2020).
- Liston, G.E.; Elder, K. A meteorological distribution system for high-resolution terrestrial modeling (micromet). J. Hydrometeor. 2006, 7, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhao, L.; Sheng, Y.; Li, J.; Wu, X.; Du, E.; Liu, G.; Pang, Q. Some characteristics of permafrost and its distribution in the gaize area on the Qinghai-Tibet plateau, China. Arct. Antarct. Alp. Res. 2016, 48, 395–409. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Zhao, L.; Wu, X.; Yue, G.; Zou, D.-F.; Nan, Z.; Liu, G.; Pang, Q.-Q.; Fang, H.-B.; et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet plateau. J. Mt. Sci.-Engl. 2016, 13, 1035–1046. [Google Scholar] [CrossRef]
- Chen, H.; Nan, Z.; Zhao, L.; Ding, Y.; Chen, J.; Pang, Q. Noah modelling of the permafrost distribution and characteristics in the west kunlun area, Qinghai-Tibet plateau, China. Permafr. Periglac. Process. 2015, 26, 160–174. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.; Hu, G.; Wu, T.; Du, E.; Liu, G.; Xiao, Y.; Li, R.; Pang, Q.; Qiao, Y.; et al. A synthesis dataset of permafrost thermal state for the Qinghai-Tibet (Xizang) plateau, China. Earth Syst. Sci. Data 2021, 13, 4207–4218. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zou, D.; Jin, H.; Li, X.; Wu, Q. Characteristic, changes and impacts of permafrost on Qinghai-Tibet plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar]
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau. Permafr. Periglac. Process 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, T.; Xie, C.; Li, R.; Wu, X.; Yao, J.; Yue, G.; Xiao, Y. Support geoscience research, environmental management, and engineering construction with investigation and monitoring on permafrost in the Qinghai-Tibet plateau, China. Bull. Chin. Acad. Sci. 2017, 32, 1159–1168. [Google Scholar]
- Guo, D.L.; Wang, H.J. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan plateau, 1981–2010. J. Geophys. Res.-Atmos. 2013, 118, 5216–5230. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Yang, K.; He, J.; Zhang, Y.; Han, X. Comparison of downscaled precipitation data over a mountainous watershed: A case study in the heihe river basin. J. Hydrometeor. 2014, 15, 1560–1574. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, D.; Nan, Z.; Wang, W.; Wu, X. Interpolated or satellite-based precipitation? Implications for hydrological modeling in a meso-scale mountainous watershed on the Qinghai-Tibet plateau. J. Hydrol. 2020, 583, 124629. [Google Scholar] [CrossRef]
- Zhao, Y.; Nan, Z.; Yu, W.; Zhang, L. Calibrating a hydrological model by stratifying frozen ground types and seasons in a cold alpine basin. Water 2019, 11, 985. [Google Scholar] [CrossRef] [Green Version]
- Mernild, S.H.; Liston, G.E.; Hiemstra, C.; Wilson, R. The andes cordillera. Part iii: Glacier surface mass balance and contribution to sea level rise (1979–2014). Int. J. Climatol. 2017, 37, 3154–3174. [Google Scholar] [CrossRef]
- Koch, S.E.; Desjardins, M.; Kocin, P.J. An interactive barnes objective map analysis scheme for use with satellite and conventional data. J. Appl. Meteorol. 1983, 22, 1487–1503. [Google Scholar] [CrossRef]
- Liston, G.E.; Sturm, M. A snow-transport model for complex terrain. J. Glaciol. 1998, 44, 498–516. [Google Scholar] [CrossRef] [Green Version]
- Iziomon, M.G.; Mayer, H.; Matzarakis, A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J. Atmos. Sol. Terr. Phys. 2003, 65, 1107–1116. [Google Scholar] [CrossRef]
- Zheng, D.; Van der Velde, R.; Su, Z.; Wen, J.; Wang, X.; Booij, M.J.; Hoekstra, A.Y.; Lv, S.; Zhang, Y.; Ek, M.B. Impacts of noah model physics on catchment-scale runoff simulations. J. Geophys. Res.: Atmos. 2016, 121, 807–832. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Wang, X.; Yi, S.; Wu, Q.; Yang, K.; Ding, Y. The role of permafrost and soil water in distribution of alpine grassland and its ndvi dynamics on the Qinghai-Tibetan plateau. Glob. Planet. Chang. 2016, 147, 40–53. [Google Scholar] [CrossRef]
- Kuang, W.; Dou, Y.; Zhang, C.; Chi, W.; Liu, A.; Liu, Y.; Zhang, R.; Liu, J. Quantifying the heat flux regulation of metropolitan land use/land cover components by coupling remote sensing modeling with in situ measurement. J. Geophys. Res. Atmos. 2015, 120, 113–130. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on modis data and support vector machine regression in the headwater region of the huanghe river, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yang, K.; Zhou, D.G.; Qin, J.; Guo, X.F. Improving the noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor. 2010, 11, 995–1006. [Google Scholar] [CrossRef]
- Zilitinkevich, S.S. Non-Local Turbulent Transport: Pollution Dispersion Aspects of Coherent Structure of Convective Flows, Air Pollution Theory and Simulation; Power, H., Moussiopoulos, N., Brebbia, C., Eds.; Computational Mechanics Publications: Boston, MA, USA, 1995; pp. 53–60. [Google Scholar]
- Wang, Z.W.; Wu, X.D.; Yue, G.Y.; Zhao, L.; Wang, Q.; Nan, Z.-T.; Qin, Y.; Wu, T.-H.; Shi, J.-Z.; Zou, D.-F. Spatial and temporal variations in spectrum-derived vegetation growth trend on the Qinghai-Tibetan plateau from 1982 to 2014. Spectrosc. Spectr. Anal. 2016, 36, 471–477. [Google Scholar]
- Kumar, A.; Chen, F.; Niyogi, D.; Alfieri, J.G.; Ek, M.; Mitchell, K. Evaluation of a photosynthesis-based canopy resistance formulation in the noah land-surface model. Bound.-Lay. Meteorol. 2010, 138, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Zhao, L.; Sheng, Y.; Cheng, G. A new map of permafrost distribution on the Tibetan plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Yang, D.; Fang, B.; Yang, W.; Qin, Y.; Wang, Y. Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan plateau. Sci. Total Environ. 2019, 649, 515–525. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Wu, T.; Zhao, L.; Li, R.; Li, W.; Hu, G.; Zou, D.; Ni, J.; Du, Y. Soil texture and its relationship with environmental factors on the Qinghai-Tibet plateau. Remote Sens. 2022, 14, 3797. [Google Scholar] [CrossRef]
- Shi, Y.; Niu, F.; Yang, C.; Che, T.; Lin, Z.; Luo, J. Permafrost presence/absence mapping of the Qinghai-Tibet plateau based on multi-source remote sensing data. Remote Sens. 2018, 10, 309. [Google Scholar] [CrossRef]
ID | Code | Latitude (°) | Longitude (°) | Altitude (m) | Underlying Surface |
---|---|---|---|---|---|
1 | ZK01 | 32.94 | 84.04 | 4730 | Barren of sparsely vegetated (BSV) |
2 | ZK02 | 32.91 | 84.07 | 4840 | Alpine steppe |
3 | ZK10 | 33.03 | 84.20 | 4890 | BSV |
4 | ZK12 | 33.16 | 85.29 | 5028 | BSV |
5 | ZK14 | 33.21 | 85.35 | 5196 | Alpine steppe |
6 | ZK22 | 33.39 | 85.63 | 5095 | Alpine steppe |
7 | ZK18 | 33.39 | 85.36 | 5105 | BSV |
8 | ZK21 | 33.80 | 85.13 | 5018 | Alpine steppe |
9 | ZK17 | 33.39 | 85.63 | 5104 | Alpine meadow |
Scheme | Landform and Landscape | Surface Layer | Subsurface Layer1 | Subsurface Layer2 | Subsurface Layer3 | Bottom Layer |
---|---|---|---|---|---|---|
ZK14 | Plain, Carex and Kobresia | sandy loam, | loamy Sand | sand | gravelly soil | bedrock, |
ZK01 | Plain, Stipa capillata Linn | loamy Sand | sand | gravelly soil | gravelly soil | bedrock |
ID | Code | Simulated MAGT (°C) | Observed MAGT (°C) | aError (°C) |
---|---|---|---|---|
1 | ZK01 | 2.3 | 2.1 | 0.2 |
2 | ZK02 | 1.5 | 2.0 | −0.5 |
3 | ZK10 | 1.8 | 2.0 | −0.2 |
4 | ZK12 | 0.7 | 0.8 | −0.1 |
5 | ZK14 | −0.1 | −0.4 | 0.3 |
6 | ZK22 | −0.4 | −0.1 | −0.3 |
7 | ZK18 | −0.1 | −0.5 | 0.4 |
8 | ZK21 | 0.4 | −0.4 | 0.8 |
9 | ZK17 | −2.4 | −1.9 | −0.5 |
Metrics | MAGT | GIC | ALT |
---|---|---|---|
Altitude | −0.669 | 0.341 | −0.295 |
MAP | 0.018 | 0.056 | −0.057 |
Vegetation coverage | −0.458 | 0.354 | −0.344 |
MAGT | - | −0.523 | 0.773 |
ALT | 0.773 | 0.280 | - |
Permafrost Type | MAGT (°C) | Average MAGT (°C) | Altitude (m) | Average Altitude (m) | Total Grid Cells | Percentage (%) |
---|---|---|---|---|---|---|
Extreme stable permafrost | <−5.0 | -- | -- | -- | -- | -- |
Stable permafrost | −3.0–−5.0 | −3.6 | 5618–4950 | 5324 | 125 | 8.0 |
Sub-stable permafrost | −1.5–−3.0 | −2.2 | 5807–4783 | 5116 | 285 | 18.2 |
Transitional permafrost | −0.5–−1.5 | −1.0 | 5790-4703 | 5091 | 178 | 11.4 |
Unstable permafrost | 0–−0.5 | −0.3 | 5643–4500 | 5037 | 127 | 8.1 |
Seasonally frozen ground (SFG) | >0 | 1.5 | 5498–4411 | 4879 | 849 | 54.3 |
Gaize area | −4.8–4.8 | 0.0 | 5807–4411 | 4995 | 1564 | 100.0 |
Areas | Mean Annual Air Temperature (MAAT) (°C) | MAP (mm) | Latitude (°) | Elevation (m) | Vegetation Overage (%) |
---|---|---|---|---|---|
West Kunlun | −6.3 | 50 | 32.3–34.0 | 2800–6700 | 0–30 |
Gaize | −0.3 | 200 | 34.5–36.1 | 4400–6000 | 0–80 |
Seasonally Frozen Ground | Pan-Sub-Stable Permafrost | Stable Permafrost | Total | ** Accuracy of Permafrost Types Against Vegetation Types | |
---|---|---|---|---|---|
BSV | 814 | 173 | 1 | 988 | 82.4% |
Alpine steppe | 34 | 387 | 52 | 473 | 81.8% |
Alpine meadow | 1 | 30 | 72 | 103 | 69.9% |
total | 849 | 590 | 125 | 1564 | |
* accuracy of vegetation types against permafrost types | 95.9% | 65.6% | 57.6% | ||
Overall accuracy | 81.4% | ||||
Kappa coefficeint | 0.654 |
MAGT (°C) | BSV | Alpine Steppe | Alpine Meadow |
---|---|---|---|
Range of the MAGT (°C) | 4.8~−2.0 | 3.8~−4.7 | 0.6~−4.8 |
Average MAGT (°C) | 1.1 | −1.7 | −3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, H.; Nan, Z.; Shang, Z. Modelling Permafrost Characteristics and Its Relationship with Environmental Constraints in the Gaize Area, Qinghai-Tibet Plateau, China. Remote Sens. 2022, 14, 5610. https://doi.org/10.3390/rs14215610
Wang Y, Chen H, Nan Z, Shang Z. Modelling Permafrost Characteristics and Its Relationship with Environmental Constraints in the Gaize Area, Qinghai-Tibet Plateau, China. Remote Sensing. 2022; 14(21):5610. https://doi.org/10.3390/rs14215610
Chicago/Turabian StyleWang, Yudan, Hao Chen, Zhuotong Nan, and Zhihai Shang. 2022. "Modelling Permafrost Characteristics and Its Relationship with Environmental Constraints in the Gaize Area, Qinghai-Tibet Plateau, China" Remote Sensing 14, no. 21: 5610. https://doi.org/10.3390/rs14215610
APA StyleWang, Y., Chen, H., Nan, Z., & Shang, Z. (2022). Modelling Permafrost Characteristics and Its Relationship with Environmental Constraints in the Gaize Area, Qinghai-Tibet Plateau, China. Remote Sensing, 14(21), 5610. https://doi.org/10.3390/rs14215610