Quantification of Above-Ground Biomass over the Cross-River State, Nigeria, Using Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Inventory Survey
2.3. Regional Aboveground Biomass Estimation
2.3.1. Satellite, Climatic and Topographic Variables
Vegetation Indices | Equations | References |
---|---|---|
NDVI | (NIR − Red)/(NIR + Red) | [65] |
EVI | 2.5 × ((NIR − Red)/(1 + NIR + 6Red − 7.5Blue) | [66] |
OSAVI | (NIR-Red)/(NIR + Red + 0.16) | [67,68] |
MSAVI | (2 × NIR + 1 − sqrt[(2 × NIR + 1 2 − 8 × (NIR − Red)])/2 | [69] |
ARVI | (NIR − (2Red − Blue))/(NIR + (2Red − Blue)) | [70] |
IRECI | (NIR − R)/(RE1/RE2) | [71] |
MRENDVI | (RE2 − RE1)/(RE2 + RE1 − 2 × Blue) | [72] |
RENDVI | (RE2 − RE1)/(RE2 + RE1) | [73,74] |
MRESR | (RE2 − Blue)/(RE1 − Blue) | [75] |
2.3.2. Regional AGB Estimation Using Random Forest
2.4. Comparisons to Other Regional to Global AGB Products
3. Results
3.1. Summary Analysis of Plots AGB
3.2. Predicting AGB Using Random Forest Algorithm
3.3. Comparison with Other Aboveground Biomass Products
4. Discussion
4.1. Aboveground Biomass Estimation over the Cross River State
4.2. Comparison to Other Regional AGB Products
4.3. REDD+ Implications and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 2017, 67, 534–545. Available online: http://bioscience.oxfordjournals.org/ (accessed on 12 January 2022). [CrossRef] [PubMed]
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Sci. Rep. 2017, 358, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agrocultuee. Nat. Clim. Change 2015, 5, 27. [Google Scholar] [CrossRef]
- Philipson, C.D.; Cutler, M.E.; Brodrick, P.G.; Asner, G.P.; Boyd, D.S.; Moura Costa, P.; Fiddes, J.; Foody, G.M.; Van Der Heijden, G.M.; Ledo, A.; et al. Active restoration accelerates the carbon recovery of human-modified tropical forest. Science 2020, 369, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Lewis, S.L.; Kofi, A.; Castilho, C. Long term thermal sensitivity to earth’s tropical forest. Science 2020, 368, 869–874. [Google Scholar] [CrossRef]
- Moon, H.; Solomon, T. Forest decline in Africa: Trends and impacts of foreign direct investment: A review. Int. J. Curr. Adv. Res. 2018, 7, 16356–16361. [Google Scholar]
- Markey, R.; Joseph, M.; Martin, O.; Wright, C. Triggering business responses to climate change policy in Australia. Aust. J. Manag. 2021, 46, 248–271. [Google Scholar] [CrossRef]
- Siyum, Z.G. Tropical dry forest dynamics in the context of climate change: Syntheses of drivers’ gaps, and management perspectives. Ecol. Process. 2000, 9, 25. [Google Scholar] [CrossRef]
- Le Quéré, C.; Robbie, M.; Pierre., F.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Jan, I.K.; Glen, P.P.; Josep, G.C.; et al. Global Carbon Budget. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Baker, T.R.; Ojo, L.O.; Phillips, O.L.; Reitsma, J.M.; White, L.; Comiskey, J.A.; et al. Increasing carbon storage in intact African tropical forests. Nature 2009, 457, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Burgess, N.; Hales, J.A.; Underwood, E.; Dinerstein, E.; Olson, D.; Itoua, I.; Schipper, J.; Ricketts, T.; Newman, K. Terrestrial ecoregions of Africa and Madagascar. A Conservation Assessment; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Bouvet, A.; Mermoz, S.; Le Toan, T.; Villard, L.; Mathieu, R.; Naidoo, L.; Asner, G.P. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 2018, 206, 156–173. [Google Scholar] [CrossRef]
- Sauger, B.; Roy, J.; Mooney, H.A. Estimations of global terrestrial productivity: Converging toward a single number? In Terrestrial Global Productivity, Physiological Ecology; Sexton, J.O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 543–557. [Google Scholar]
- Keeling, H.C.; Phillips, O.L. The global relationship between forest productivity and biomass. Glob. Ecol. Biogeogr. 2007, 16, 618–631. [Google Scholar] [CrossRef]
- IPCC. Volume 4—Agriculture, forestry and other land use. In Guidelines for National Greenhouse Gas Inventories; 2006. 7 July. Available online: ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed on 7 July 2020).
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Davies, S.J.; Phillips, O.L.; Lewis, S.L.; Sist, P.; Schepaschenko, D.; Armston, J.; Baker, T.R.; Coomes, D.; Disney, M.; et al. Ground data are essential for biomass remote sensing missions. Surv. Geophys. 2019, 40, 863–880. [Google Scholar] [CrossRef]
- Brandt, M.; Wigneron, J.P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2018, 2, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Ter Steege, H.; Pitman, N.C.; Killeen, T.J.; Laurance, W.F.; Peres, C.A.; Guevara, J.E.; Salomão, R.P.; Castilho, C.V.; Amaral, I.L.; de Almeida Matos, F.D.; et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 2015, 1, e1500936. [Google Scholar] [CrossRef] [Green Version]
- Solomon, N.; Birhane, E.; Tadesse, T.; Treydte, A.C.; Meles, K. Carbon stocks and sequestration potential of dry forests under community management in Tigray, Ethiopia. Ecol Process. 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.; Salas, W. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. First map of tropical Africa’s aboveground biomass derived from satellite imagery. Environ. Res. Lett. 2008, 3, 045011. [Google Scholar] [CrossRef] [Green Version]
- Avitabile, V.; Herold, M.; Heuvelink, G.B.; Lewis, S.; Phillips, O.; Asner, P.; Armston, J.; Ashton, L.; Banin, N.; Bayol, N.J.; et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 2016, 22, 1406–1420. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v2. Cent. Environ. Data Anal. 2021. [Google Scholar] [CrossRef]
- United Nation Framework Convention on Climate Change (UNFCC). Kyoto Protocol to the United Nation Framework Convention on Climate Change; kpeng.pdf (unfccc.int); UN: San Francisco, CA, USA, 1998. [Google Scholar]
- FAO. Global Forest Resources Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Agrawal, A.; Nepstad, D.; Chhatre, A. Reducing Emissions from Deforestation and Forest Degradation. Annu. Rev. Environ. Resour. 2011, 36, 373–396. [Google Scholar] [CrossRef] [Green Version]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Robinson, D.A.; Larissa, R.F.; Emanuele, L.; Cristiano, B.; Christine, A.; Katrin, M.; Sirio, M.; Brigitta, S.; Vito, F.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2013, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Nurul, A.Z.; Zulkiflee, A.L.; Mohd, N.S. Modelling above-ground live trees biomass and carbon stock estimation of tropical lowland Dipterocarp Forest: Integration of field-based and remotely sensed estimates. Int. J. Remote Sens. 2018, 39, 2312–2340. [Google Scholar]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Larson, A.M. Forest tenure reform in the age of climate change: Lessons for REDD+. Glob. Environ. Chang. 2011, 21, 540–549. [Google Scholar] [CrossRef]
- Djomo, A.N.; Picard, N.; Fayolle, A.; Henry, M.; Ngomanda, A.; Ploton, P.; McLellan, J.; Saborowski, J.; Adamou, I.; Lejeune, P. Tree allometry for estimating of carbon stocks in tropical Africa. Forestry 2016, 89, 446–455. [Google Scholar] [CrossRef]
- IPCC. Japan: Prepared by the National Greenhouse Gas Inventories Programme. In Guidelines for National Greenhouse Gas Inventories; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Carbon Brief. Available online: https://www.carbonbrief.org/the-carbon-brief-profile-nigeria (accessed on 10 December 2020).
- Enuoh, O.O.O.; Ogogo, A.U. Assessing Tropical Deforestation and Biodiversity Loss in the Cross River Rainforest of Nigeria. Open J. For. 2018, 8, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Global Forest Watch, Cross River, Nigeria Deforestation Rates and Statistics. 2020. Available online: https://www.globalforestwatch.org/dashboards/country/NGA/9/ (accessed on 18 January 2020).
- UN REDD+ Nigeria. Forest Reference Emission Levels (FRELs) for the Federal Republic of Nigeria: A Jurisdictional Approach Focused on Cross River State 2018; Federal Department of Forestry; Federal Ministry of Environment: 2018. Available online: https://redd.unfccc.int/files/nigeria_sub_national_frel_modified_edition._final_submitted.pdf (accessed on 23 December 2019).
- Feldpausch, T.R.; Banin, L.; Phillips, O.L.; Baker, T.R.; Lewis, S.L.; Quesada, C.A.; Affum-Baffoe, K.; Arets, E.J.; Berry, N.J.; Bird, M.; et al. Height-diameter allometry of tropical forest trees. Biogeosciences 2011, 8, 1081–1106. [Google Scholar] [CrossRef] [Green Version]
- USAIDS Delivery Project. Final Country Report: Nigeria. U.S. Geological Survey. 2006. Available online: http://glovis.usgs.gov (accessed on 30 January 2020).
- Larsen, T.B. Butterflies of the Cross River National Park—Diversity writ large. In Proceedings of the Workshop: Essential Partnership—The Forest and the People, Cross River National Park, Calabar, Nigeria, 23–28 October 1997; pp. 229–235. [Google Scholar]
- Fon, P.; Akintoye, O.A.; Olorundami, T.; Nkpena, C.O.; Ukata, S.U.; Harrison, E.U. Forest Resources of Cross River State: Their potentials, threats, and mitigation measures. J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 64–71. [Google Scholar]
- Jimoh, S.O.; Adesoye, P.; Adeyemi, A.; Emmanuel, T.I. Forest structure analysis in the Oban Division of Cross River National Park, Nigeria. J. Agric. Sci. Technol. 2012, 2, 510–518. [Google Scholar]
- Ayoade, J.O. Introduction to Climatology for the Tropics; Spectrum Books Ltd.: Ibadan, Nigeria, 2004; p. 207. [Google Scholar]
- Aigbe, H.I.; Omokhua, G.E. Tree species composition and diversity in Oban Forest Reserve, Nigeria. J. Agric. Stud. 2015, 3, 10–24. [Google Scholar] [CrossRef]
- NIMET Obudu weather outlook. Unpublished data. 2017.
- Cross River State Forestry Commission Forestry Manual 2019. Unpublished. 2019.
- Gautam, T.P.; Mandal, T.N. Effect of disturbance on biomass, production, and carbon dynamics in moist tropical forest of eastern Nepal. For. Ecosyst. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- UN-REDD+ Nigeria. National Annual Program Report, Nigeria 2015; January to December 2015; UN-REDD+ Nigeria, 2015. 2015. Available online: https://www.un-redd.org/document-library/nigeria-national-programme-2015-annual-report-draft (accessed on 17 January 2019).
- Wiemann, M.C.; Williamson, G.B. Biomass Determination Using Wood Specific Gravity from Increment Cores; General Technical Report FPL–GTR–225; United States Department of Agriculture: Washington, DC, USA, 2013. [Google Scholar]
- Carsan, S.; Orwa, C.; Harwood, C.; Kindt, R.; Stroebel, A.; Neufeldt, H.; Jamnadass, R. African Wood Density Database; World Agroforestry Centre: Nairobi, Kenya, 2012; Available online: http://www.worldagroforestry.org/output/african-wood-density-database (accessed on 22 December 2018).
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Vieilledent, G. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Food and Agricultural Organization. List of Wood Density for Tree Species from Tropical America Africa, and Asia; (see the Appendix) FAO Forestry paper 134; FAO: Rome, Italy, 20 September 1997. [Google Scholar]
- UNREDD+ Nigeria. Handbook for Forest Carbon Inventory: Standard Operation Procedures; Cross River State Government: Calabar, Nigeria, 2016. [Google Scholar]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Parmentier, I.; Malhi, Y.; Senterre, B.; Whittaker, R.J.; ATDN; Alonso, A.; Wöll, H. The odd man out? Might climate explain the lower tree α-diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 2007, 95, 1058–1071. [Google Scholar] [CrossRef]
- Sun, W.; Chen, B.; Messinger, D.W. Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Opt. Eng. 2014, 53, 013107. [Google Scholar] [CrossRef] [Green Version]
- Crismeire, I.; Ana, M.C. The Potential of Sentinel-2 Satellite Images for Land-Cover/Land-Use and Forest Biomass Estimation: A Review. In Solid Forest Biomass: From Trees to Energy; Goncave, A.C., Ed.; IntechOpen online: London, UK, 2021. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation, and mapping of aboveground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A processor for users. In Living Planet Symposium; Spacebooks Online: Prague, Czech Republic, 2016; p. 91. [Google Scholar]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Xi, Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 2018, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Climate Change Service. C3S ERA5-Land Reanalysis. Copernicus Climate Change Service. 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 25 March 2020).
- Rouse, J.; Hass, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. Remote Sens. Environ. 1973, 44, 117–126. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S.; Hanocq, J.J. The soil line concept in remote sensing. Remote Sens. Rev. 1993, 7, 65–82. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H. Modified Soil Adjusted Vegetation Index (MSAVI). Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Kaufman, Y.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, J.M. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Kerr, Y.H.; Moran, M.S.; Weltz, M.; Huete, A.R.; Sorooshian, S.; Bryant, R. Leaf Area Index Estimates Using Remotely Sensed Data and BRDF Models in a Semiarid Region. Remote Sens. Environ. 2000, 73, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Merzlyak, M.M. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Brieman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mathias, S.; Rosie, Y.Z. The random forest algorithm for statistical learning. Stata J. 2020, 20, 3–29. [Google Scholar]
- Hoovera, C.M.; Mark, J.D.; Andy, R.C.; Yamasaki, M. Evaluation of alternative approaches for landscape-scale biomass estimation in a mixed-species northern forest. For. Ecol. Manag. 2018, 409, 552–563. [Google Scholar] [CrossRef]
- Wu, C.F.; Shen, H.H.; Shen, A.H.; Deng, J.S.; Gan, M.Y.; Zhu, J.X.; Xu, H.W.; Wang, K. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery. J. Appl. Remote Sens. 2016, 10, 035010. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a Random Forest Model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Luan, J.; Zhang, C.; Xu, B.; Xue, Y.; Ren, Y. The predictive performances of random forest models with limited sample size and different species traits. Fish. Res. 2020, 227, 105534. [Google Scholar] [CrossRef]
- Qi, Y. Random forest for bioinformatics. In Ensemble Machine Learning; Springer: Boston, MA, USA, 2012; pp. 307–323. [Google Scholar]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef] [Green Version]
- Matsuki, K.; Kuperman, V.; Julie, A. The Random Forests statistical technique: An examination of its value for the study of reading. Sci. Stud. Read. 2016, 20, 20–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification, and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Pandit, S.; Satoshi, T.; Dube, T. Exploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal. Geocarto Int. 2020, 35, 1832–1849. [Google Scholar] [CrossRef]
- Mitchard, E.T.; Saatchi, S.S.; Baccini, A.; Asner, G.P.; Goetz, S.J.; Harris, N.L.; Brown, S. Uncertainty in the spatial distribution of tropical forest biomass: A comparison of pan-tropical maps. Carbon Balance Manag. 2013, 8, 10. Available online: http://www.cbmjournal.com/content/8/1/10 (accessed on 30 July 2019). [CrossRef] [PubMed] [Green Version]
- Júnior, I.D.S.T.; Torres, C.M.M.E.; Leite, H.G.; de Castro, N.L.M.; Soares, C.P.B.; Castro, R.V.O.; Farias, A.A. Machine learning: Modelling increment in diameter of individual trees on Atlantic Forest fragments. Ecol. Indic. 2020, 117, 106685. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Freeman, E.A.; Moisen, G.; Coulston, J.W.; Wilson, B. Random Forests and Stochastic Gradient Boosting for Predicting Tree Canopy Cover: Comparing Tuning Processes and Model Performance. Can. J. For. Res. 2015, 46, 3. [Google Scholar] [CrossRef] [Green Version]
- Pandit STsuyuki, S.; Dube, T. Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel 2 data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Frauke, D.; Seifert, S.S. Evaluation of variable selection method for random forests and omics data sets. Brief. Bioinform. 2017, 20, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Dengsheng, L.; Guiying, L.; Guangxing, W.; Qi, C.; Lijuan, L.; Dengqiu, L. Comparative Analysis of Modelling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Xiang, M.Q.; Aguerre, C.O.; Morgeneyer, M.; Philippe, F.; Liu, Y.; Bressot, C. Uncertainty assessment for the airborne nanoparticle collection efficiency of a TEM grid-equipped sampling system by Monte-Carlo calculation. Adv. Powder Technol 2021, 32, 1793–1801. [Google Scholar] [CrossRef]
- Tang, W.B.; Xu, G.S.; Zhang, S.J. Dimensional variation analysis for rigid part assembly with an improvement of monte carlo simulation. IEEE Access 2020, 8, 5862–5872. [Google Scholar] [CrossRef]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Global Wood Density Databased Identifier 2009. Available online: http://hdl.handle.net/10255/dryad.235 (accessed on 5 June 2019).
- Dube, T.; Mutanga, O. The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in Mgeni Catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2016, 119, 415–425. [Google Scholar] [CrossRef]
- Antonelli, A.; Kissling, W.D.; Flantua, S.G.A.; Bermúdez, M.A.; Mulch, A.; Muellner-Riehl, A.N.; Hoorn, C. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 2018, 11, 718–725. [Google Scholar] [CrossRef]
- Poorter, L.; van der Sande, M.T.; Thompson, J.; Arets, E.J.; Alarcón, A.; Álvarez-Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328. [Google Scholar] [CrossRef] [Green Version]
- Poorter, L.; van der Sande, M.T.; Arets, E.J.; Ascarrunz, N.; Enquist, B.J.; Finegan, B.; Licona, J.C.; Martínez-Ramos, M.; Mazzei, L.; Meave, J.A.; et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 2017, 26, 1423–1434. [Google Scholar] [CrossRef]
- Malhi, J.; Baker, T.R.; Philips, O.L. The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob. Chang. Ecol. 2004, 10, 563–591. [Google Scholar] [CrossRef] [Green Version]
- Slik, J.W.F.; Paoli, G.; McGuire, K. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2012, 22, 1261–1271. [Google Scholar] [CrossRef]
- Balima, L.H.; Kouamé, F.N.G.; Bayen, P.; Ganamé, M.; Nacoulma, B.M.I.; Thiombiano, A.; Soro, D. Influence of climate and forest attributes on aboveground carbon storage in Burkina Faso, West Africa. Environ. Chall. 2021, 4, 100123. [Google Scholar] [CrossRef]
- Muukkonen, P.; Heiskanen, J. Estimating biomass for boreal forest using ASTER satellite data combined with standwise forest inventory data. Remote Sens. Environ. 2005, 99, 434–447. [Google Scholar] [CrossRef]
- Zhang, H.; Song, T.; Wang, K.; Yang, H.; Yue, Y.; Zeng, Z.; Peng, W.; Zeng, F. Influences of stand characteristics and environmental factors on forest biomass and root–shoot allocation in southwest China. Ecol. Eng. 2016, 91, 7–15. [Google Scholar] [CrossRef]
- Adan, M.S. Integrating Sentinel-2 Derived Vegetation Indices and Terrestrial Laser Scanner to Estimate Above-Ground Biomass/Carbon in Ayer Hitam Tropical Forest Malaysia. Master’s Thesis, The University of Twente, Enschede, The Netherlands, 2017. [Google Scholar]
- Nuthammachot, N.; Phairuang, W.; Wicaksono, P.; Sayektiningsih, T. Estimating aboveground biomass on private forest using Sentinel-2 imagery. J. Sens. 2018, 2018, 6745629. [Google Scholar] [CrossRef]
- Soto-Navarro, J.A.; Nur, A.; Alfred, F.; Estaban, J.; Pablo, R.N.; Maria, L.G. Integration of UAV, WSentinel-1 and Sentinel-2 data for aboveground biomass estimation in Senegal. Remote Sens. 2019, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Requena, S.D.; Rozendaal, D.M.; De Sy, V. Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 2019, 25, 3609–3624. [Google Scholar] [CrossRef] [Green Version]
- Shoko, C.; Mutanga, O. Examining the strength of the newly launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS J. Photogramm. Remote Sens. 2017, 129, 32–40. [Google Scholar] [CrossRef]
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Williams, M. The Importance of Consistent Global Forest Aboveground Biomass Product Validation. Surv. Geophys. 2019, 40, 979–999. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC. 2011. The Cancun Agreements: Outcome of the work on the Ad Hoc Working Group on Long-Term Cooperative Action under the Convention. In Proceedings of the Conference of the Parties on its Sixteenth Session, Cancun, Mexico, 29 November–10 December 2010. FCCC/CP/2010/7/Add.1. [Google Scholar]
- FAO. Keeping an Eye on SDG 15; FAO: Rome Italy, 2017. [Google Scholar]
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ. 2022, 270, 112845. [Google Scholar] [CrossRef]
- Forkuor, G.; Zoungrana, J.B.B.; Dimobe, K.; Ouattara, B.; Vadrevu, K.P.; Tondoh, J.E. Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets-A case study. Remote Sens. Environ. 2020, 236, 111496. [Google Scholar] [CrossRef]
Landcover Type Parameters | Undisturbed Forest (n = 28) | Disturbed Forest (n = 18) | Crop Fields (n = 26) | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
DBH (cm) | 164.4 | 5.1 | 38.8 | 164 | 5.1 | 40.2 | 82.6 | 5.1 | 25.2 |
Tree height (cm) | 67.0 | 2.8 | 23.6 | 45 | 4.1 | 22.0 | 30.0 | 1.5 | 8.2 |
BA (m2/ha) | 77.4 | 6.3 | 35.5 | 105.4 | 5.9 | 28.8 | 43.6 | 2.7 | 15.9 |
WD (g/cm3) | 0.51 | 0.23 | 0.71 | 0.93 | 0.20 | 0.55 | 0.87 | 0.23 | 0.50 |
AGB (t/ha) | 588.3 | 11.5 | 222.5 | 203.3 | 14.4 | 106.5 | 107.3 | 3.0 | 24.4 |
Product/Study | Mean AGB t/ha | Maximum AGB t/ha. | Total AGB (Pg) |
---|---|---|---|
Saatchi et al. 2011 [22] | 93.86 | 365.9 | 0.290 |
Baccini et al. 2012 [23] | 86.87 | 244 | 0.253 |
Avitabile et al. 2016 [24] | 109.69 | 443.1 | 0.330 |
UN-Nigeria REDD+ 2018 | - | - | 0.267 |
ESA CCI+ 2021 | 71.71 | 205 | 0.124 |
Current Study | 121.98 | 588 | 0.246 |
AGB Product | RMSE (t/ha) | MAE | Bias (t/ha) | RelRMSE% | Willmott Index |
---|---|---|---|---|---|
Saatchi | 67.93 | 41.35 | −40.9 | 49.69 | 0.89 |
Baccini | 78.03 | 48.41 | −48.4 | 57.09 | 0.85 |
Avitabile | 32.89 | 23.57 | −17.3 | 24.06 | 0.98 |
ESA CCI | 78.87 | 59.52 | −49.9 | 56.24 | 0.85 |
This study | 40.95 | 23.14 | +7.5 | 29.95 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amuyou, U.A.; Wang, Y.; Ebuta, B.F.; Iheaturu, C.J.; Antonarakis, A.S. Quantification of Above-Ground Biomass over the Cross-River State, Nigeria, Using Sentinel-2 Data. Remote Sens. 2022, 14, 5741. https://doi.org/10.3390/rs14225741
Amuyou UA, Wang Y, Ebuta BF, Iheaturu CJ, Antonarakis AS. Quantification of Above-Ground Biomass over the Cross-River State, Nigeria, Using Sentinel-2 Data. Remote Sensing. 2022; 14(22):5741. https://doi.org/10.3390/rs14225741
Chicago/Turabian StyleAmuyou, Ushuki A., Yi Wang, Bisong Francis Ebuta, Chima J. Iheaturu, and Alexander S. Antonarakis. 2022. "Quantification of Above-Ground Biomass over the Cross-River State, Nigeria, Using Sentinel-2 Data" Remote Sensing 14, no. 22: 5741. https://doi.org/10.3390/rs14225741
APA StyleAmuyou, U. A., Wang, Y., Ebuta, B. F., Iheaturu, C. J., & Antonarakis, A. S. (2022). Quantification of Above-Ground Biomass over the Cross-River State, Nigeria, Using Sentinel-2 Data. Remote Sensing, 14(22), 5741. https://doi.org/10.3390/rs14225741