Fast Line Segment Detection and Large Scene Airport Detection for PolSAR
Abstract
:1. Introduction
- The literature on line segment detection is surveyed and the importance of line segments in the image interpretation task is determined. Then, we propose a new fast line segment detection algorithm, PLSD, to detect line segments in PolSAR images. It can detect line segments in linear time.
- Based on PLSD and the scattering characteristics of airports, we propose an airport detection method for large scenes.
- The results of the above two detection methods and the state-of-the-art (SOTA) method are compared on several PolSAR images. The superiority of the two models is demonstrated.
2. Method
2.1. Line Segment Detection for PolSAR (PLSD)
2.1.1. Edge Detector with Covariance Matrix
2.1.2. Statistical Region Merging Based on Gradient Strength and Direction
- (1)
- Gradient strength equals the average region strength up to a strength tolerance ;
- (2)
- Gradient direction equals the region angle up to an angle tolerance ;
- (3)
- Gradient direction equals the initial region angle up to an angle tolerance .
Algorithm 1 SRMSD |
|
2.1.3. Line Segment Validation
- (1)
- , is uniformly distributed over ;
- (2)
- The family follows a Markov chain of order one.
2.1.4. The Complete PLSD Algorithm
Algorithm 2 PLSD |
|
2.2. PLSD-Based Airport Detection on PolSAR Images
3. Result
3.1. Datasets
3.2. Comparison of Line Segment Detection Algorithms
3.3. In-Depth Analysis of the SRMSD
3.4. Comparison of Airport Detection Methods
4. Discussion
4.1. Parameter Settings
4.2. Complexity of the PLSD Algorithm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Weng, T.; Xing, J.; Li, Z.; Yuan, Z.; Pan, Z.; Tan, S.; Luo, R. Employing deep learning for automatic river bridge detection from SAR images based on adaptively effective feature fusion. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102425. [Google Scholar] [CrossRef]
- Wei, Q.R.; Feng, D.Z.; Zheng, W.; Zheng, J.B. Rapid line-extraction method for SAR images based on edge-field features. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1865–1869. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, Y.; Pan, S.; Zhou, F.; An, B.; Kaup, A. Automatic registration of images with inconsistent content through line-support region segmentation and geometrical outlier removal. IEEE Trans. Image Process. 2018, 27, 2731–2746. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Xu, C.; Liu, J.; Hua, F. Automatic optical-to-SAR image registration by iterative line extraction and Voronoi integrated spectral point matching. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6058–6072. [Google Scholar] [CrossRef]
- Liu, N.; Cui, Z.; Cao, Z.; Pi, Y.; Dang, S. Airport detection in large-scale SAR images via line segment grouping and saliency analysis. IEEE Geosci. Remote Sens. Lett. 2018, 15, 434–438. [Google Scholar] [CrossRef]
- Tang, G.; Xiao, Z.; Liu, Q.; Liu, H. A novel airport detection method via line segment classification and texture classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2408–2412. [Google Scholar] [CrossRef]
- Luo, Y.T.; Zhao, L.Y.; Zhang, B.; Jia, W.; Xue, F.; Lu, J.T.; Zhu, Y.H.; Xu, B.Q. Local line directional pattern for palmprint recognition. Pattern Recognit. 2016, 50, 26–44. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Wang, M.; Zheng, Y.; Wang, J.; Ming, D. Change Detection of High Spatial Resolution Images Based on Region-Line Primitive Association Analysis and Evidence Fusion. Remote Sens. 2019, 11, 2484. [Google Scholar] [CrossRef] [Green Version]
- Yue, Z.; Gao, F.; Xiong, Q.; Wang, J.; Huang, T.; Yang, E.; Zhou, H. A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cogn. Comput. 2021, 13, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Hong, W.; Zhang, F.; Pottier, E. Optimal combination of polarimetric features for vegetation classification in PolSAR image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3919–3931. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Hou, Y.; Wang, X.; Wang, L. Marine oil slick detection using improved polarimetric feature parameters based on polarimetric synthetic aperture radar data. Remote Sens. 2021, 13, 1607. [Google Scholar] [CrossRef]
- He, J.; Wang, Y.; Liu, H.; Wang, N. PolSAR ship detection using local scattering mechanism difference based on regression kernel. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1725–1729. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Samal, A.; Edwards, J. Generalized Hough transform for natural shapes. Pattern Recognit. Lett. 1997, 18, 473–480. [Google Scholar] [CrossRef]
- Cha, J.; Cofer, R.H.; Kozaitis, S.P. Extended Hough transform for linear feature detection. Pattern Recognit. 2006, 39, 1034–1043. [Google Scholar] [CrossRef]
- Fernandes, L.A.; Oliveira, M.M. Real-time line detection through an improved Hough transform voting scheme. Pattern Recognit. 2008, 41, 299–314. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, F.; Xiang, D.; Yin, Q.; Zhou, Y. Fast task-specific region merging for SAR image segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, F.; Yin, Q.; Xiang, D.; Zhou, Y. Fast SAR image segmentation with deep task-specific superpixel sampling and soft graph convolution. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Wei, Q.R.; Feng, D.Z. Extracting line features in SAR images through image edge fields. IEEE Geosci. Remote Sens. Lett. 2016, 13, 540–544. [Google Scholar] [CrossRef]
- Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.; Xu, J. Robust line detection of synthetic aperture radar images based on vector radon transformation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5310–5320. [Google Scholar] [CrossRef]
- Von Gioi, R.G.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 32, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Akinlar, C.; Topal, C. EDLines: A real-time line segment detector with a false detection control. Pattern Recognit. Lett. 2011, 32, 1633–1642. [Google Scholar] [CrossRef]
- Desolneux, A.; Moisan, L.; Morel, J.M. From Gestalt Theory to Image Analysis: A Probabilistic Approach; Springer Science & Business Media: New York, NY, USA, 2007; Volume 34. [Google Scholar]
- Cho, N.G.; Yuille, A.; Lee, S.W. A novel linelet-based representation for line segment detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Li, H.C.; Hu, W.S.; Pan, L.; Du, Q. Adaptive Cross-Attention-Driven Spatial–Spectral Graph Convolutional Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, H.C.; Hu, W.S.; Li, W.; Li, J.; Du, Q.; Plaza, A. A3CLNN: Spatial, spectral and multiscale attention ConvLSTM neural network for multisource remote sensing data classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 747–761. [Google Scholar] [CrossRef]
- Zhao, K.; Han, Q.; Zhang, C.B.; Xu, J.; Cheng, M.M. Deep hough transform for semantic line detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4793–4806. [Google Scholar] [CrossRef]
- Liu, C.; Abergel, R.; Gousseau, Y.; Tupin, F. LSDSAR, a Markovian a contrario framework for line segment detection in SAR images. Pattern Recognit. 2020, 98, 107034. [Google Scholar] [CrossRef] [Green Version]
- Borghys, D.; Lacroix, V.; Perneel, C. Edge and line detection in polarimetric SAR images. In Proceedings of the 2002 International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; Volume 2, pp. 921–924. [Google Scholar]
- Jin, R.; Zhou, W.; Yin, J.; Yang, J. Cfar line detector for polarimetric sar images using wilks’ test statistic. IEEE Geosci. Remote Sens. Lett. 2016, 13, 711–715. [Google Scholar] [CrossRef]
- Zhou, G.; Cui, Y.; Chen, Y.; Yang, J.; Rashvand, H.; Yamaguchi, Y. Linear feature detection in polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1453–1463. [Google Scholar] [CrossRef]
- Schou, J.; Skriver, H.; Nielsen, A.A.; Conradsen, K. CFAR edge detector for polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 20–32. [Google Scholar] [CrossRef]
- Conradsen, K.; Nielsen, A.A.; Schou, J.; Skriver, H. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Kahn, P.; Kitchen, L.; Riseman, E.M. Real-Time Feature Extraction: A Fast Line Finder for Vision-Guided Robot Navigation; University of Massachusetts Amherst: Amherst, MA, USA, 1987. [Google Scholar]
- Kahn, P.; Kitchen, L.; Riseman, E.M. A fast line finder for vision-guided robot navigation. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 1098–1102. [Google Scholar] [CrossRef]
- Desolneux, A.; Moisan, L.; Morel, J.M. Meaningful alignments. Int. J. Comput. Vis. 2000, 40, 7–23. [Google Scholar] [CrossRef]
- Myaskouvskey, A.; Gousseau, Y.; Lindenbaum, M. Beyond independence: An extension of the a contrario decision procedure. Int. J. Comput. Vis. 2013, 101, 22–44. [Google Scholar] [CrossRef]
- Leiserson, C.E.; Rivest, R.L.; Cormen, T.H.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 1994; Volume 3. [Google Scholar]
- Chen, L.; Luo, R.; Xing, J.; Li, Z.; Yuan, Z.; Cai, X. Geospatial transformer is what you need for aircraft detection in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Yan, Z.; Xu, F.; Wang, R.; Diao, W.; Chen, J.; Li, J.; Feng, Y.; Xu, T.; et al. FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 116–130. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, S. A centroid auto-fused hierarchical fuzzy c-means clustering. IEEE Trans. Fuzzy Syst. 2020, 29, 2006–2017. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, Y.; Yang, J.; Yin, J. Harbor detection in polarimetric sar images based on the characteristics of parallel curves. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1400–1404. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Shi, W.; Liu, Y. Airport extraction via complementary saliency analysis and saliency-oriented active contour model. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1085–1089. [Google Scholar] [CrossRef]
- Burns, J.B.; Hanson, A.R.; Riseman, E.M. Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 425–455. [Google Scholar] [CrossRef]
Image | Size (Pixel) | Acquisition Date | Location |
---|---|---|---|
Figure 8a | September 2017 | Fort Smith, Canada | |
Figure 8b | January 2012 | Hawaii Island, America | |
Figure 8c | May 2015 | Calumet, Louisiana, America |
Method | Image | Number of Line Segments | Times (s) |
---|---|---|---|
LSD | Figure 8c Figure 8b Figure 8a | 319 26 1 | 4145.76 60.12 0.85 |
EDLines | Figure 8c Figure 8b Figure 8a | 728 152 9 | 46.29 8.54 2.12 |
Linelet-LSD | Figure 8c Figure 8b Figure 8a | 4782 580 33 | 15,007.67 211.27 8.31 |
LSDSAR | Figure 8c Figure 8b Figure 8a | 2663 442 52 | 8.84 1.74 0.28 |
HT | Figure 8c Figure 8b Figure 8a | 62 69 6 | 0.11 0.05 0.04 |
PLSD | Figure 8c Figure 8b Figure 8a | 538 49 2 | 6.69 1.52 0.27 |
Number of Line Segments | Average Width of Line Segments (Pixel) | Time (s) | |
---|---|---|---|
With strength | 538 | 4.8753 | 6.48 |
Without strength | 575 | 5.7394 | 6.41 |
Name | Image Size (Pixel) | Airport Size (Pixel) | Acquisition Data | Location |
---|---|---|---|---|
Coldfoot Airport | 4297 × 2697 | 249 × 214 | 10/2015 | Coldfoot, America |
Perales Airport | 4164 × 2878 | 136 × 427 | 04/2014 | Ibague, Colombia |
Kona Airport | 3195 × 2141 | 658 × 177 | 01/2012 | Hawaii Island, America |
Changuinola Airport | 3086 × 2162 | 55 × 187 | 02/2010 | Changuinola, Panama |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Liu, Q.; Yin, Q.; Ma, F. Fast Line Segment Detection and Large Scene Airport Detection for PolSAR. Remote Sens. 2022, 14, 5842. https://doi.org/10.3390/rs14225842
Wang D, Liu Q, Yin Q, Ma F. Fast Line Segment Detection and Large Scene Airport Detection for PolSAR. Remote Sensing. 2022; 14(22):5842. https://doi.org/10.3390/rs14225842
Chicago/Turabian StyleWang, Daochang, Qi Liu, Qiang Yin, and Fei Ma. 2022. "Fast Line Segment Detection and Large Scene Airport Detection for PolSAR" Remote Sensing 14, no. 22: 5842. https://doi.org/10.3390/rs14225842
APA StyleWang, D., Liu, Q., Yin, Q., & Ma, F. (2022). Fast Line Segment Detection and Large Scene Airport Detection for PolSAR. Remote Sensing, 14(22), 5842. https://doi.org/10.3390/rs14225842