Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review
Abstract
:1. Introduction
2. Seismo-Electromagnetic Phenomena in the Lithosphere
3. Seismo-Electromagnetic Phenomena in the Lower Atmosphere
4. Seismo-Electromagnetic Phenomena in the Upper Atmosphere
5. Possible Mechanisms of Seismo-Electromagnetic Phenomena
6. Applications of Seismo-Electromagnetic Signals in Earthquake Forecasting
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J. Whether earthquake precursors help for prediction do exist. Sci. China Press Chin. Ed. 2016, 61, 409–414. [Google Scholar]
- Jordan, T.H. Earthquake predictability, brick by brick. Seismol. Res. Lett. 2006, 77, 3–6. [Google Scholar] [CrossRef]
- Davis, C.; Keilis-Borok, V.; Kossobokov, V.; Soloviev, A. Advance prediction of the 11 March 2011 Great East Japan Earthquake: A missed opportunity for disaster preparedness. Int. J. Disaster Risk Reduct. 2012, 1, 17–32. [Google Scholar] [CrossRef]
- Iacoletti, S.; Cremen, G.; Galasso, C. Validation of the epidemic-type aftershock sequence (ETAS) models for simulation-based seismic hazard assessments. Seismol. Res. Lett. 2022, 93, 1601–1618. [Google Scholar] [CrossRef]
- Ogata, Y. Prediction and validation of short-to-long-term earthquake probabilities in inland Japan using the hierarchical space-time ETAS and space-time Poisson process models. Earth Planets Space 2022, 74, 110. [Google Scholar] [CrossRef]
- Zhuang, J. Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space 2011, 63, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Zechar, J.D.; Jordan, T.H. Testing alarm-based earthquake predictions. Geophys. J. Int. 2008, 172, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Shebalin, P.; Narteau, C.; Holschneider, M. From alarm-based to rate-based earthquake forecast models. Bull. Seimolog. Soc. Am. 2012, 102, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhuang, J.; Kato, T.; Bebbington, M. Assessing the potential improvement in short-term earthquake forecasts from incorporation of GPS data. Geophys. Res. Lett. 2013, 40, 2631–2635. [Google Scholar] [CrossRef]
- Han, P.; Zhuang, J.; Hattori, K.; Chen, C.-H.; Febriani, F.; Chen, H.; Yoshino, C.; Yoshida, S. Assessing the potential earthquake precursory information in ULF magnetic data recorded in Kanto, Japan during 2000–2010: Distance and magnitude dependences. Entropy 2020, 22, 859. [Google Scholar] [CrossRef]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Hattori, K. ULF geomagnetic changes associated with large earthquakes. Terr. Atmos. Ocean. Sci. 2004, 15, 329–360. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.; Chen, C.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.; Yoshida, S. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J. Geophys. Res. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Park, S.K. Precursors to earthquakes: Seismoelectromagnetic signals. Surv. Geophys. 1996, 17, 493–516. [Google Scholar] [CrossRef]
- Johnston, M.J.S. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surv. Geophys. 1997, 18, 441–476. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Legen’ka, A.D.; Gaivoronskaya, T.V.; Depuev, V.K. Main phenomenological features of ionospheric precursors of strong earthquakes. J. Atmos. Sol. Terr. Phys. 2003, 65, 1337–1347. [Google Scholar] [CrossRef]
- Sarkar, S.; Gwal, A.K.; Parrot, M. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes. J. Atmos. Sol. Terr. Phys. 2007, 69, 1524–1540. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; Team, N.; Team, U.E.C. Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth 2004, 29, 617–625. [Google Scholar] [CrossRef]
- Miyakoshi, J. Anomalous time-variation of the self-potential in the fractured zone of an active fault preceding the earthquake occurrence. J. Geomagn. Geoelectr. 1986, 38, 1015–1030. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K.; Nomicos, K.; Lazaridou, M. Earthquake prediction and electric signals. Nature 1986, 322, 120. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K.; Lazaridou, M. Latest aspects of earthquake prediction in Greece based on seismic electric signals, II. Tectonophysics 1993, 224, 1–37. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K.; Lazaridouvarotsou, M.; Nagao, T. Earthquake predictions issued in Greece by seismic electric signals since 6 February 1990. Tectonophysics 1993, 224, 269–288. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Varotsos, P.A.; Skordas, E.S.; Uyeda, S.; Zlotnicki, J.; Nagao, T.; Rybin, A.; Lazaridou-Varotsos, M.S.; Papadopoulou, K.A. Seismic electric signals in seismic prone areas. Earthq. Sci. 2018, 31, 44–51. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S. Study in natural time of geoelectric field and seismicity changes preceding the Mw6.8 earthquake on 25 October 2018 in Greece. Entropy 2018, 20, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarlis, N.V.; Skordas, E.S.; Christopoulos, S.-R.G.; Varotsos, P.A. Natural time analysis: The area under the receiver operating characteristic curve of the order parameter fluctuations minima preceding major earthquakes. Entropy 2020, 22, 583. [Google Scholar] [CrossRef] [PubMed]
- Ismaguilov, V.S.; Kopytenko, Y.A.; Hattori, K.; Hayakawa, M. Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes. Nat. Hazards Earth Syst. Sci. 2003, 3, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Enomoto, Y.; Fujinawa, Y.; Hata, M.; Hayakawa, M.; Huang, Q.; Izutsu, J.; Kushida, Y.; Maeda, K.; Oike, K. Electromagnetic anomalies associated with 1995 Kobe earthquake. J. Geodyn. 2002, 33, 401–411. [Google Scholar] [CrossRef]
- Hattori, K.; Takahashi, I.; Yoshino, C.; Isezaki, N.; Iwasaki, H.; Harada, M.; Kawabata, K.; Kopytenko, E.; Kopytenko, Y.; Maltsev, P.; et al. ULF geomagnetic field measurements in Japan and some recent results associated with Iwateken Nairiku Hokubu earthquake in 1998. Phys. Chem. Earth 2004, 29, 481–494. [Google Scholar] [CrossRef]
- Serita, A.; Hattori, K.; Yoshino, C.; Hayakawa, M.; Isezaki, N. Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. Nat. Hazards Earth Syst. Sci. 2005, 5, 685–689. [Google Scholar] [CrossRef]
- Zhuang, J.; Vere-Jones, D.; Guan, H.; Ogata, Y.; Ma, L. Preliminary analysis of observations on the ultra-low frequency electric field in the Beijing region. Pure Appl. Geophys. 2005, 162, 1367–1396. [Google Scholar] [CrossRef]
- Telesca, L.; Hattori, K. Non-uniform scaling behavior in ultra-low-frequency (ULF) earthquake-related geomagnetic signals. Phys. A Stat. Mech. Its Appl. 2007, 384, 522–528. [Google Scholar] [CrossRef]
- Bleier, T.E.; Dunson, C.; Maniscalco, M.; Bryant, N.; Bambery, R.; Freund, F. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake. Nat. Hazards Earth Syst. Sci. 2009, 9, 585–603. [Google Scholar] [CrossRef]
- Xie, T.; Liu, J.; Lu, J.; Li, M.; Yao, L.; Wang, Y.; Yu, C. Retrospective analysis on electromagnetic anomalies observed by ground fixed station before the 2008 Wenchuan Ms8.0 earthquake. Chin. J. Geophys. Chin. Ed. 2018, 61, 1922–1937. [Google Scholar]
- Chen, C.; Hsu, H.L.; Wen, S.; Yeh, T.; Chang, F.Y.; Wang, C.; Liu, J.; Sun, Y.; Hattori, K.; Yen, H. Evaluation of seismo-electric anomalies using magnetic data in Taiwan. Nat. Hazards Earth Syst. Sci. 2013, 13, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q. Retrospective investigation of geophysical data possibly associated with the Ms8.0 Wenchuan earthquake in Sichuan, China. J. Asian Earth Sci. 2011, 41, 421–427. [Google Scholar] [CrossRef]
- Huang, Q. Forecasting the epicenter of a future major earthquake. Proc. Natl. Acad. Sci. USA 2015, 112, 944–945. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.; Chen, C.; Yen, H.; Yeh, T.; Liu, J.; Hattori, K.; Peng, H.; Wang, C.; Shin, T.C. Magnetic storm free ULF analysis in relation with earthquakes in Taiwan. Nat. Hazards Earth Syst. Sci. 2012, 12, 1747–1754. [Google Scholar] [CrossRef]
- Xu, G.; Han, P.; Huang, Q.; Hattori, K.; Febriani, F.; Yamaguchi, H. Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw9.0). J. Asian Earth Sci. 2013, 77, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.Y.; Parrot, M.; Bortnik, J. ULF Wave Activity Observed in the Nighttime Ionosphere Above and Some Hours Before Strong Earthquakes. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028396. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G., Jr. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Kopytenko, Y.A.; Matiashvili, T.G.; Voronov, P.M.; Kopytenko, E.A.; Molchanov, O.A. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. 1993, 77, 85–95. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra-low-frequency magnetic field measurements during the Guam Earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Hattori, K.; Akinaga, Y.; Hayakawa, M.; Yumoto, K.; Nagao, T.; Uyeda, S. ULF magnetic anomaly preceding the 1997 Kagoshima earthquake. Seism. Electromagn. 2002, 353, 19–28. [Google Scholar]
- Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc. Natl. Acad. Sci. USA 2002, 99, 7352–7355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, K.; Serita, A.; Gotoh, K.; Yoshino, C.; Harada, M.; Isezaki, N.; Hayakawa, M. ULF geomagnetic anomaly associated with 2000 Izu Islands earthquake swarm, Japan. Phys. Chem. Earth 2004, 29, 425–435. [Google Scholar] [CrossRef]
- Hattori, K.; Serita, A.; Yoshino, C.; Hayakawa, M.; Isezaki, N. Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm. Phys. Chem. Earth 2006, 31, 281–291. [Google Scholar] [CrossRef]
- Gotoh, K.; Hayakawa, M.; Smirnova, N. Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June–August 2000. Nat. Hazards Earth Syst. Sci. 2003, 3, 229–236. [Google Scholar] [CrossRef]
- Telesca, L.; Lapenna, V.; Macchiato, M.; Hattori, K. Investigating non-uniform scaling behavior in Ultra Low Frequency (ULF) earthquake-related geomagnetic signals. Earth Planet. Sci. Lett. 2008, 268, 219–224. [Google Scholar] [CrossRef]
- Ismaguilov, V.S.; Kopytenko, Y.A.; Hattori, K.; Voronov, P.M.; Molchanov, O.A.; Hayakawa, M. ULF magnetic emissions connected with under sea bottom earthquakes. Nat. Hazards Earth Syst. Sci. 2001, 1, 23–31. [Google Scholar] [CrossRef]
- Kotsarenko, A.; Molchanov, O.; Hayakawa, M.; Koshevaya, S.; Grimalsky, V.; Enriquez, R.W.; Cruz-Abeyro, J.A.L. Investigation of ULF magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at summer 2000, Japan. Nat. Hazards Earth Syst. Sci. 2005, 5, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Hattori, K.; Huang, Q.; Hirano, T.; Ishiguro, Y.; Yoshino, C.; Febriani, F. Evaluation of ULF electromagnetic phenomena associated with the 2000 Izu Islands earthquake swarm by wavelet transform analysis. Nat. Hazards Earth Syst. Sci. 2011, 11, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Hattori, K.; Han, P.; Yoshino, C.; Febriani, F.; Yamaguchi, H.; Chen, C. Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000–2010: Case Studies and Statistical Studies. Surv. Geophys. 2013, 34, 293–316. [Google Scholar] [CrossRef]
- Schekotov, A.; Molchanov, O.A.; Hayakawa, M.; Fedorov, E.; Chebrov, V.N.; Sinitsin, V.; Gordeev, E.; Belyaev, G.G.; Yagova, N. ULF/ELF magnetic field variations from atmosphere induced by seismicity. Radio Sci. 2007, 42, 1–13. [Google Scholar] [CrossRef]
- Molchan, G. Structure of optimal strategies in earthquake prediction. Tectonophysics 1991, 193, 267–276. [Google Scholar] [CrossRef]
- Molchan, G.M.; Kagan, Y.Y. Earthquake prediction and its optimization. J. Geophys. Res. 1992, 97, 4823–4838. [Google Scholar] [CrossRef]
- Warden, S.; Bleier, T.; Kappler, K. Long term air ion monitoring in search of pre-earthquake signals. J. Atmos. Sol. Terr. Phys. 2019, 186, 47–60. [Google Scholar] [CrossRef]
- Dunson, J.C.; Bleier, T.E.; Roth, S.; Heraud, J.; Alvarez, C.H.; Lira, A. The Pulse Azimuth effect as seen in induction coil magnetometers located in California and Peru 2007–2010, and its possible association with earthquakes. Nat. Hazards Earth Syst. Sci. 2011, 11, 2085–2105. [Google Scholar] [CrossRef] [Green Version]
- Kappler, K.N.; Schneider, D.D.; MacLean, L.S.; Bleier, T.E.; Lemon, J.J. An algorithmic framework for investigating the temporal relationship of magnetic field pulses and earthquakes applied to California. Comput. Geosci. 2019, 133, 104317. [Google Scholar] [CrossRef]
- Heavlin, W.D.; Kappler, K.; Yang, L.; Fan, M.; Hickey, J.; Lemon, J.; MacLean, L.; Bleier, T.; Riley, P.; Schneider, D. Case-control study on a decade of ground-based magnetometers in California reveals modest signal 24–72 h prior to earthquakes. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024109. [Google Scholar] [CrossRef]
- Yuan, H.H.; Chen, B.; Gu, Z.W.; Ni, Z.; Su, S.P.; Xing, C.J.; Song, C.K. Mobile seismic and geomagnetic monitoring network in China. In Proceedings of the 2018 Annual Meeting of Chinese Geoscience Union, Beijing, China, 21–24 October 2018. [Google Scholar]
- Li, Q.; Yuan, Y.; Yang, X.; Cai, S.; Sun, W. Variation of the geomagnetic harmonic wave amplitude ratio before the MS5.5 Eryuan earthquake in 2013. Acta Seismol. Sin. Chin. Ed. 2016, 38, 122–129. [Google Scholar]
- Ma, Q. Multi-dipole observation system and study on the abnormal variation of the geoelectric field observed at Capital network before the 2006 Wen’an, Hebei of China, Ms 5.1 earthquake. Acta Seismol. Sin. Chin. Ed. 2008, 30, 615–625. [Google Scholar]
- Qian, J.; Ma, Q.; Li, S. Further study on the anomalies in apparent resistivity in the NE configuration at Chengdu station associated with Whenchuan Ms 8.0 earthquake. Acta Seismol. Sin. Chin. Ed. 2013, 35, 4–17. [Google Scholar]
- Ma, Q.; Fang, G.; Li, W.; Zhou, J. Electromagnetic anomalies before the 2018 Lushan Ms 7.0 earthquake. Acta Seismol. Sin. Chin. Ed. 2021, 35, 717–730. [Google Scholar]
- Du, X.; Ye, Q.; Ma, Z.; Li, N.; Chen, J.; Tan, D. The detection depth of symmetric four-electrode resistivity observation in/near the epicentral region of strong earthquakes. Chin. J. Geophys. Chin. Ed. 2008, 51, 1943–1949. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, G.; Jijun, W.; Wenjun, L.; Yan, Z. Variation and analysis of resistivity before and after the Zhangbei-Shangyi earthquake. Seismol. Geol. Chin. Ed. 1998, 20, 164–171. [Google Scholar]
- Chen, J.; Du, X.; Tan, D.; An, Z. Magnetotelluric monitoring of earthquakes in the laohushan fault zone, gansu province. Earthq. Chin. Ed. 2009, 29, 79–85. [Google Scholar]
- Kappler, K.N.; Morrison, H.F.; Egbert, G.D. Long-term monitoring of ULF electromagnetic fields at Parkfield, California. J. Geophys. Res. Solid Earth 2010, 115, 406. [Google Scholar] [CrossRef] [Green Version]
- Campbell, W.H. Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake. J. Geophys. Res. Space Phys. 2009, 114, 307. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.N.; Love, J.J.; Johnston, M.J.S. On the reported magnetic precursor of the 1989 Loma Prieta earthquake. Phys. Earth Planet. Inter. 2009, 173, 207–215. [Google Scholar] [CrossRef]
- Masci, F.; Thomas, J.N. Are there new findings in the search for ULF magnetic precursors to earthquakes? J. Geophys. Res. Space Phys. 2015, 120, 10289–10304. [Google Scholar] [CrossRef] [Green Version]
- Fidani, C. The earthquake lights (EQL) of the 6 April 2009 Aquila earthquake, in Central Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Derr, J. Earthquake lights: A review of observations and present theories. Bull. Seismol. Soc. Am. 1973, 63, 2177–2187. [Google Scholar]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, 17 August 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Ouzounov, D.; Bryant, N.; Logan, T.; Pulinets, S.; Taylor, P. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Phys. Chem. Earth Parts A/B/C 2006, 31, 154–163. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Chunli, K.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Jianguo, H. Near earth surface anomalies of the atmospheric electric field and earthquakes. Acta Seismol. Sin. Engl. Ed. 1989, 2, 289–298. [Google Scholar]
- Chen, T.; Li, L.; Zhang, X.-X.; Ma, Q.-M.; Li, W.; Ti, S.; Wu, H.; Li, R.-K.; Luo, J.; Su, J.-F. Near-epicenter weather conditions several hours before strong earthquakes (Ms ≥ 6). Nat. Hazards 2022, 110, 57–68. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Huang, C.H.; Ho, Y.Y.; Chen, C.H. A statistical study of lightning activities and M ≥ 5.0 earthquakes in Taiwan during 1993–2004. Surv. Geophys. 2015, 36, 851–859. [Google Scholar] [CrossRef]
- Finkelstein, D.; Hill, R.D.; Powell, J.R. The Piezoelectric Theory of earthquake lightning. J. Geophys. Res. 1973, 78, 992–993. [Google Scholar] [CrossRef]
- Qin, K.; Wu, L.; De Santis, A.; Wang, H. Surface latent heat flux anomalies before the MS 7.1 New Zealand earthquake 2010. Chin. Sci. Bull. 2011, 56, 3273. [Google Scholar] [CrossRef] [Green Version]
- Kai, Q. Preliminary analysis of surface temperature anomalies that preceded the two major Emilia 2012 earthquakes (Italy). Ann. Geophys. 2012, 55, 823–828. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 234. [Google Scholar]
- Genzano, N.; Filizzola, C.; Hattori, K.; Pergola, N.; Tramutoli, V. Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005–2015). J. Geophys. Res. Solid Earth 2021, 126, e2020JB020108. [Google Scholar] [CrossRef]
- Blackett, M.; Wooster, M.J.; Malamud, B.D. Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001. Geophys. Res. Lett. 2011, 38, 303. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Q. A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area using MODIS LST data. Nat. Hazards Earth Syst. Sci. 2019, 19, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Galperin, Y.I.; Hayakawa, M. On the magnetospheric effects of experimental ground explosions observed from AUREOL-3. J. Geomagn. Geoelectr. 1996, 48, 1241–1263. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. Anomalies in the sub-ionospheric VLF signals for the 1995 Hyogo-ken Nanbu earthquake. J. Phys. Earth 1996, 44, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, O.A.; Hayakawa, M. Subionospheric VLF signal perturbations possibly related to earthquakes. J. Geophys. Res. Space Phys. 1998, 103, 17489–17504. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Parrot, M.; Saradjian, M.R. Investigation of VLF and HF waves showing seismo-ionospheric anomalies induced by the 29 September 2009 Samoa earthquake (M-w = 8.1). Nat. Hazards Earth Syst. Sci. 2010, 10, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.H.; Zhang, X.M.; Yuan, S.G.; Wang, L.W.; Cao, J.B.; Huang, J.P.; Zhu, X.H.; Piergiorgio, P.; Dai, J.P. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. On the precursory signature of kobe earthquake on VLF subionospheric signals. In Proceedings of the 1997 International Symposium on Electromagnetic Compatibility, Beijing, China, 21–23 May 1997; pp. 72–75. [Google Scholar]
- Hayakawa, M.; Ohta, K.; Maekawa, S.; Yamauchi, T.; Ida, Y.; Gotoh, T.; Yonaiguchi, N.; Sasaki, H.; Nakamura, T. Electromagnetic precursors to the 2004 Mid Niigata Prefecture earthquake. Phys. Chem. Earth Parts A/B/C 2006, 31, 356–364. [Google Scholar] [CrossRef]
- Hayakawa, M. VLF/LF radio sounding of ionospheric perturbations associated with earthquakes. Sensors 2007, 7, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Rozhnoi, A.; Solovieva, M.S.; Molchanov, O.A.; Hayakawa, M. Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. Phys. Chem. Earth Parts A/B/C 2004, 29, 589–598. [Google Scholar] [CrossRef]
- Asada, T.; Baba, H.; Kawazoe, M.; Sugiura, M. An attempt to delineate very low frequency electromagnetic signals associated with earthquakes. Earth Planets Space 2001, 53, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Kamogawa, M.; Izutsu, J.; Baba, H.; Narushima, T.; Takamura, N.; Sakurada, T.; Uehara, H. First report of the electromagnetic wave detection system in VLF range, Tokai University—Proven for the existence of preseismic phenomena. Bull. Inst. Ocean. Rresearch Dev. 2016, 37, 29–36. [Google Scholar]
- Moriya, T.; Mogi, T.; Takada, M. Anomalous pre-seismic transmission of VHF-band radio waves resulting from large earthquakes, and its statistical relationship to magnitude of impending earthquakes. Geophys. J. Int. 2010, 180, 858–870. [Google Scholar] [CrossRef]
- Zhang, X. The development in seismic application research of VLF/LF radio waves. Acta Seismol. Sin. Chin. Ed. 2021, 43, 656. [Google Scholar]
- Zhao, G.Z.; Wang, L.F.; Tang, J.; Chen, X.B.; Zhan, Y.; Xa, Q.B.; Wang, J.J.; Cai, J.T.; Xu, G.J.; Wan, Z.S.; et al. New experiments of CSELF electromagnetic method for earthquake monitoring. Chin. J. Geophys. Chin. Ed. 2010, 53, 479–486. [Google Scholar]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santolik, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth Parts A/B/C 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Zeng, Z.C.; Zhang, B.; Fang, G.Y.; Wang, D.F.; Yin, H.J. The analysis of ionospheric variations before Wenchuan earthquake with DEMETER data. Chin. J. Geophys. Chin. Ed. 2009, 52, 11–19. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Parrot, M.; Saradjian, M.R. Electron and ion density variations before strong earthquakes (M>6.0) using DEMETER and GPS data. Nat. Hazards Earth Syst. Sci. 2010, 10, 7–18. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Yang, D.; Qian, J.; Parrot, M. Response of the ionospheric electron density to different types of seismic events. Nat. Hazards Earth Syst. Sci. Discuss. 2011, 11, 2173–2180. [Google Scholar]
- Sarkar, S.; Tiwari, S.; Gwal, A.K. Electron density anomalies associated with M ≥ 5.9 earthquakes in Indonesia during 2005 observed by DEMETER. J. Atmos. Sol. -Terr. Phys. 2011, 73, 2289–2299. [Google Scholar] [CrossRef]
- Parrot, M. Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity. Ann. Geophys. 2012, 55, 149–155. [Google Scholar]
- Li, M.; Parrot, M. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res. Space Phys. 2013, 118, 3731–3739. [Google Scholar] [CrossRef] [Green Version]
- Pisa, D.; Němec, F.; SantolíK, O.; Parrot, M.; Rycroft, M. Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity. J. Geophys. Res. Space Phys. 2013, 118, 5286–5295. [Google Scholar] [CrossRef] [Green Version]
- Rozhnoi, A.; Solovieva, M.; Parrot, M.; Hayakawa, M.; Biagi, P.-F. VLF/LF signal studies of the ionospheric response to strong seismic activity in the Far Eastern region combining the DEMETER and ground-based observations. Phys. Chem. Earth Parts A/B/C 2015, 85–86, 141–149. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M.; Berthelier, J.J. Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophys. Res. Lett. 2008, 35, 109. [Google Scholar] [CrossRef]
- Marchetti, D.; Akhoondzadeh, M. Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (M-w = 8.2) earthquake of 8 September 2017. Adv. Space Res. 2018, 62, 614–623. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’Arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide statistical correlation of eight years of swarm satellite data with M5.5+ earthquakes: New hints about the preseismic phenomena from space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Piscini, A.; Campuzano, S.A.; De Carvalho, W.V.J.O. Pre-earthquake chain processes detected from ground to satellite altitude in preparation of the 2016–2017 seismic sequence in Central Italy. Remote Sens. Environ. 2019, 229, 93–99. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Parrot, M. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Adv. Space Res. 2018, 61, 974–984. [Google Scholar] [CrossRef]
- Cao, J.B.; Zeng, L.; Zhan, F.; Wang, Z.G.; Wang, Y.; Chen, Y.; Meng, Q.C.; Ji, Z.Q.; Wang, P.F.; Liu, Z.W.; et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci. China Technol. Sci. 2018, 61, 653–658. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.H.; Parrot, M.; Zhang, X.M.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.P.; Lu, H.X.; Guo, F.; et al. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Liu, J.; Guan, Y.B.; Zhang, X.M.; Shen, X.H. The data comparison of electron density between CSES and DEMETER satellite, swarm constellation and IRI model. Earth Space Sci. 2021, 8, e2020EA001475. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Hulot, G.; Vigneron, P.; Shen, X.H.; Zhima, Z.; Zhou, B.; Magnes, W.; Olsen, N.; Toffner-Clausen, L.; Huang, J.P.; et al. The CSES global geomagnetic field model (CGGM): An IGRF-type global geomagnetic field model based on data from the China seismo-electromagnetic satellite. Earth Planets Space 2021, 73, 45. [Google Scholar] [CrossRef]
- Yan, R.; Zhima, Z.R.; Xiong, C.; Shen, X.H.; Huang, J.P.; Guan, Y.B.; Zhu, X.H.; Liu, C. Comparison of electron density and temperature from the CSES satellite with other space-borne and ground-based observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027747. [Google Scholar] [CrossRef]
- Shen, X.H.; Huang, J.P.; Lin, J.; Luo, Z.C.; Yue, H.J.; Wu, L.X.; Zhang, X.M.; Cui, J. Project plan and research on data analysis and processing technology of geophysical exploration satellite and application research of earthquake prediction. Prog. Earthq. Sci. Chin. Ed. 2022, 52, 1–25. [Google Scholar]
- Zhima, Z.; Zhou, B.; Zhao, S.; Wang, Q.; Huang, J.; Zeng, L.; Lei, J.; Chen, Y.; Li, C.; Yang, D.; et al. Cross-calibration on the electromagnetic field detection payloads of the China seismo-electromagnetic satellite. Sci. China Technol. Sci. 2022, 65, 1415–1426. [Google Scholar] [CrossRef]
- Rui, Y.; XuHui, S.; JianPing, H.; Qiao, W.; Wei, C.; DaPeng, L.; YanYan, Y.; HengXin, L.; Song, X. Examples of unusual ionospheric observations by the CSES prior to earthquakes. Earth Planet. Phys. 2018, 2, 515–526. [Google Scholar]
- Song, R.; Hattori, K.; Zhang, X.M.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Sol. Terr. Phys. 2020, 205, 105291. [Google Scholar] [CrossRef]
- Zhu, K.; Zheng, L.; Yan, R.; Shen, X.; Zeren, Z.; Xu, S.; Chu, W.; Liu, D.; Zhou, N.; Guo, F. The variations of electron density and temperature related to seismic activities observed by CSES. Nat. Hazards Res. 2021, 1, 88–94. [Google Scholar] [CrossRef]
- Xiong, P.; Long, C.; Zhou, H.Y.; Battiston, R.; Zhang, X.M.; Shen, X.H. Identification of Electromagnetic Pre-Earthquake Perturbations from the DEMETER Data by Machine Learning. Remote Sens. 2020, 12, 3643. [Google Scholar] [CrossRef]
- Xiong, P.; Long, C.; Zhou, H.; Battiston, R.; De Santis, A.; Ouzounov, D.; Zhang, X.; Shen, X. Pre-earthquake ionospheric perturbation identification using CSES data via transfer learning. Front. Environ. Sci. 2021, 9, 514. [Google Scholar] [CrossRef]
- Li, Z.; Yang, B.; Huang, J.; Yin, H.; Yang, X.; Liu, H.; Zhang, F.; Lu, H. Analysis of pre-earthquake space electric field disturbance observed by CSES. Atmosphere 2022, 13, 934. [Google Scholar] [CrossRef]
- Pulinets, S.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Cham, The Netherlands, 2004. [Google Scholar]
- Liu, J.Y.; Chen, Y.I.; Jhuang, H.K.; Lin, Y.H. Ionospheric foF2 and TEC anomalous days associated with M ≥ 5.0 earthquakes in Taiwan during 1997–1999. Terr. Atmos. Ocean. Sci. 2004, 15, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res. Space Phys. 2006, 111, 304. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 M(w)7.9 Wenchuan earthquake. J. Geophys. Res. Space Phys. 2009, 114, 320. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Hattori, K. Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9.3 Sumatra-Andaman Earthquake. J. Geophys. Res. Space Phys. 2010, 115, 312. [Google Scholar] [CrossRef]
- Liu, J.Y.; Le, H.; Chen, Y.I.; Chen, C.H.; Liu, L.; Wan, W.; Su, Y.Z.; Sun, Y.Y.; Lin, C.H.; Chen, M.Q. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J. Geophys. Res. Space Phys. 2011, 116, 302. [Google Scholar]
- Hirooka, S.; Hattori, K.; Nishihashi, M.; Takeda, T. Neural network based tomographic approach to detect earthquake-related ionospheric anomalies. Nat. Hazards Earth Syst. Sci. 2011, 11, 2341–2353. [Google Scholar] [CrossRef] [Green Version]
- Hirooka, S.; Hattori, K.; Nishihashi, M.; Kon, S.; Takeda, T. Development of ionospheric tomography using neural network and its application to the 2007 Southern Sumatra earthquake. Electr. Eng. Jpn. 2012, 181, 9–18. [Google Scholar] [CrossRef]
- Astafyeva, E.; Shalimov, S.; Olshanskaya, E.; Lognonne, P. Ionospheric response to earthquakes of different magnitudes: Larger quakes perturb the ionosphere stronger and longer. Geophys. Res. Lett. 2013, 40, 1675–1681. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, W.; Yu, H.; Liu, Z.; Kong, Q. Impending ionospheric anomaly preceding the Iquique Mw8.2 earthquake in Chile on 1 April 2014. Geophys. J. Int. 2015, 203, 1461–1470. [Google Scholar] [CrossRef]
- Akyol, A.A.; Arikan, O.; Arikan, F. A machine learning-based detection of earthquake precursors using ionospheric data. Radio Sci. 2020, 55, 1–21. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, 312. [Google Scholar] [CrossRef] [Green Version]
- Mukhtarov, P.; Pancheva, D.; Andonov, B.; Pashova, L. Global TEC maps based on GNSS data: 1. Empirical background TEC model. J. Geophys. Res. Space Phys. 2013, 118, 4594–4608. [Google Scholar] [CrossRef]
- Lim, B.J.M.; Leong, E.C. Challenges in the detection of ionospheric pre-earthquake total electron content anomalies (PETA) for earthquake forewarning. Pure Appl. Geophys. 2019, 176, 2425–2449. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Chen, Y.I.; Yang, W.H.; Oyama, K.I.; Kuo, K.W. A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001–2007. J. Asian Earth Sci. 2010, 39, 76–80. [Google Scholar] [CrossRef]
- Astafyeva, E.; Heki, K. Vertical TEC over seismically active region during low solar activity. J. Atmos. Sol. Terr. Phys. 2011, 73, 1643–1652. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Application of Artificial Bee Colony algorithm in TEC seismo-ionospheric anomalies detection. Adv. Space Res. 2015, 56, 1200–1211. [Google Scholar] [CrossRef]
- Sompotan, A.; Puspito, N.; Joelianto, E.; Hattori, K. Analysis of ionospheric precursor of earthquake using GIM-TEC, kriging and neural network. Asian J. Earth Sci. 2015, 8, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Kamogawa, M.; Kakinami, Y. Is an ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake a precursor? J. Geophys. Res. Space Phys. 2013, 118, 1751–1754. [Google Scholar] [CrossRef]
- Masci, F.; Thomas, J.N.; Villani, F.; Secan, J.A.; Rivera, N. On the onset of ionospheric precursors 40 min before strong earthquakes. J. Geophys. Res. Space Phys. 2015, 120, 1383–1393. [Google Scholar] [CrossRef]
- Iwata, T.; Umeno, K. Correlation analysis for preseismic total electron content anomalies around the 2011 Tohoku-Oki earthquake. J. Geophys. Res. Space Phys. 2016, 121, 8969–8984. [Google Scholar] [CrossRef]
- Iwata, T.; Umeno, K. Preseismic ionospheric anomalies detected before the 2016 Kumamoto earthquake. J. Geophys. Res. Space Phys. 2017, 122, 3602–3616. [Google Scholar] [CrossRef]
- Chen, H.; Miao, M.; Chang, Y.; Wang, Q.; Shen, X.; Hattori, K.; Han, P. Singular spectrum analysis of the total electron content changes prior to M ≥ 6.0 earthquakes in the Chinese mainland during 1998–2013. Front. Earth Sci. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Jhuang, H.-K.; Ho, Y.-Y.; Kakinami, Y.; Liu, J.; Oyama, K.-I.; Parrot, M.; Hattori, K.; Nishihashi, M.; Zhang, D. Seismo-ionospheric anomalies of the GPS-TEC appear before the 12 May 2008 1 M7.9 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3579. [Google Scholar] [CrossRef]
- He, L.M.; Wu, L.X.; Pulinets, S.; Liu, S.J.; Yang, F. A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: A case study of the M9.0 Tohoku earthquake. Adv. Space Res. 2012, 50, 211–220. [Google Scholar] [CrossRef]
- Guo, J.; Shi, K.; Liu, X.; Sun, Y.; Li, W.; Kong, Q. Singular spectrum analysis of ionospheric anomalies preceding great earthquakes: Case studies of Kaikoura and Fukushima earthquakes. J. Geodyn. 2019, 124, 1–13. [Google Scholar] [CrossRef]
- He, L.M.; Heki, K. Three-dimensional distribution of ionospheric anomalies prior to three large earthquakes in Chile. Geophys. Res. Lett. 2016, 43, 7287–7293. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Hattori, K.; Zhang, X.; Liu, J.-Y.; Yoshino, C. Detecting the ionospheric disturbances in Japan using the three-dimensional computerized tomography. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028561. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Zhang, X.M.; Cai, J.T.; Zhan, Y.; Ma, Q.Z.; Tang, J.; Du, X.B.; Han, B.; Wang, L.F.; Chen, X.B.; et al. A review of seismo-electromagnetic research in China. Sci. China Earth Sci. 2022, 52, 1229–1246. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Pulinets, S.A.; Tsai, Y.B.; Chuo, Y.J. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes. Geophys. Res. Lett. 2000, 27, 3113–3116. [Google Scholar] [CrossRef]
- Kon, S.; Nishihashi, M.; Hattori, K. Ionospheric anomalies possibly associated with M ≥ 6.0 earthquakes in the Japan area during 1998–2010: Case studies and statistical study. J. Asian Earth Sci. 2011, 41, 410–420. [Google Scholar] [CrossRef]
- Chen, Y.-I.; Huang, C.-S.; Liu, J.-Y. Statistical evidences of seismo-ionospheric precursors applying receiver operating characteristic (ROC) curve on the GPS total electron content in China. J. Asian Earth Sci. 2015, 114, 393–402. [Google Scholar] [CrossRef]
- Zhu, F.; Jiang, Y. Investigation of GIM-TEC disturbances before M ≥ 6.0 inland earthquakes during 2003–2017. Sci. Rep. 2020, 10, 18038. [Google Scholar] [CrossRef]
- He, L.M.; Heki, K. Ionospheric anomalies immediately before M(w)7.0–8.0 earthquakes. J. Geophys. Res. Space Phys. 2017, 122, 8659–8678. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Chakrabarti, S.K. Comparative study of charged particle precipitation from Van Allen radiation belts as observed by NOAA satellites during a land earthquake and an ocean earthquake. Adv. Space Res. 2019, 64, 719–732. [Google Scholar] [CrossRef]
- Marchitelli, V.; Harabaglia, P.; Troise, C.; De Natale, G. On the correlation between solar activity and large earthquakes worldwide. Sci. Rep. 2020, 10, 1–10. [Google Scholar]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Bowman, D.D.; Ouillon, G.; Sammis, C.G.; Sornette, A.; Sornette, D. An observational test of the critical earthquake concept. J. Geophys. Res. Solid Earth 1998, 103, 24359–24372. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Ma, Y.; Zhou, X.; Li, Z.; An, X.; Wang, K. Analysis of ionospheric vertical total electron content before the 1 April 2014 Mw 8.2 Chile earthquake. J. Seismol. 2017, 21, 1599–1612. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Tsai, H.F. Variations of ionospheric total electron content during the Chi-Chi Earthquake. Geophys. Res. Lett. 2001, 28, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J.; Xu, L. Statistical analysis of ionospheric TEC anomalies before global M(w) ≥ 7.0 earthquakes using data of CODE GIM. J. Seismol. 2017, 21, 759–775. [Google Scholar] [CrossRef]
- Karia, S.P.; Pathak, K.N. Change in refractivity of the atmosphere and large variation in TEC associated with some earthquakes, observed from GPS receiver. Adv. Space Res. 2011, 47, 867–876. [Google Scholar] [CrossRef]
- Fitterman, D. Calculations of self-potential anomalies near vertical contacts. Geophysics 1979, 44, 195–205. [Google Scholar] [CrossRef]
- Yoshida, S. Convection current generated prior to rupture in saturated rocks. J. Geophys. Res. 2001, 106, 2103–2120. [Google Scholar] [CrossRef]
- Yoshida, S.; Ogawa, T. Electromagnetic emissions from dry and wet granite associated with acoustic emissions. J. Geophys. Res. Solid Earth 2004, 109, 204. [Google Scholar] [CrossRef]
- Freund, F.; Heraud, J.; Centa, V.; Scoville, J. Mechanism of unipolar electromagnetic pulses emitted from the hypocenters of impending earthquakes. Eur. Phys. J. Spec. Top 2021, 230, 47–65. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, Y. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: A 3D FEM numerical simulation model. Proc. Jpn. Acad. Ser. B 2010, 86, 257–264. [Google Scholar] [CrossRef]
- Enomoto, Y. Coupled interaction of earthquake nucleation with deep Earth gases: A possible mechanism for seismo-electromagnetic phenomena. Geophys. J. Int. 2012, 191, 1210–1214. [Google Scholar] [CrossRef] [Green Version]
- Shinbrot, T.; Kim, N.H.; Thyagu, N.N. Electrostatic precursors to granular slip events. Proc. Natl. Acad. Sci. USA 2012, 109, 10806–10810. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Chen, X.; Huang, Q. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophys. J. Int. 2012, 188, 925–944. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Wen, J.; Huang, Q.; Chen, X. Electrokinetic effect combined with surface-charge assumption: A possible generation mechanism of coseismic EM signals. Geophys. J. Int. 2015, 200, 837–850. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Huang, Q.; Chen, X. Numerical simulation of seismo-electromagnetic fields associated with a fault in a porous medium. Geophys. J. Int. 2016, 206, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Leeman, J.; Scuderi, M.M.; Marone, C.; Saffer, D.M.; Shinbrot, T. On the origin and evolution of electrical signals during frictional stick slip in sheared granular material. J. Geophys. Res. 2014, 119, 4253–4268. [Google Scholar] [CrossRef]
- Mizutani, H.; Ishido, T.; Yokokura, T.; Ohnishi, S. Electrokinetic phenomena associated with earthquakes. Geophys. Res. Lett. 1976, 3, 365–368. [Google Scholar] [CrossRef]
- Fenoglio, M.A.; Johnston, M.J.S.; Byerlee, J.D. Magnetic and electric fields associated with changes in high pore pressure in fault zones: Application to the Loma Prieta ULF emissions. J. Geophys. Res. Solid Earth 1995, 100, 12951–12958. [Google Scholar] [CrossRef]
- Huang, Q. One possible generation mechanism of co-seismic electric signals. Proc. Jpn. Acad. Ser. B 2002, 78, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Sasai, Y. Piezomagnetic fields produced by dislocation sources. Surv. Geophys. 1994, 15, 363–382. [Google Scholar] [CrossRef]
- Gershenzon, N.I.; Gokhberg, M.B.; Yunga, S.L. On the electromagnetic field of an earthquake focus. Phys. Earth Planet. Inter. 1993, 77, 13–19. [Google Scholar] [CrossRef]
- Draganov, A.B.; Inan, U.S.; Taranenko, Y.N. ULF magnetic signatures at the Earth surface due to ground water flow: A possible precursor to earthquakes. Geophys. Res. Lett. 1991, 18, 1127–1130. [Google Scholar] [CrossRef]
- Surkov, V. ULF electromagnetic perturbations resulting from the fracture and dilatancy in the earthquake preparation zone. Atmos. Ionos. Electromagn. Phenom. Assoc. Earthq. 1999, 1, 371–382. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M. Generation of ULF electromagnetic emissions by microfracturing. Geophys. Res. Lett. 1995, 22, 3091–3094. [Google Scholar] [CrossRef]
- Freund, F. Time-resolved study of charge generation and propagation in igneous rocks. J. Geophys. Res. Solid Earth 2000, 105, 11001–11019. [Google Scholar] [CrossRef] [Green Version]
- Freund, F. Charge generation and propagation in igneous rocks. J. Geodyn. 2002, 33, 543–570. [Google Scholar] [CrossRef] [Green Version]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Freund, F.; Takeuchi, A.; Lau, B.W.S. Electric currents streaming out of stressed igneous rocks—A step towards understanding pre-earthquake low frequency EM emissions. Phys. Chem. Earth 2006, 31, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Huang, Q.; Chen, X. A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media. Earthq. Sci. 2010, 23, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.X.; Harris, J.M.; Wen, J.; Huang, Y.H.; Twardzik, C.; Chen, X.F.; Hu, H.S. Modeling of the coseismic electromagnetic fields observed during the 2004 M-w 6.0 Parkfield earthquake. Geophys. Res. Lett. 2016, 43, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Koike, K.; Yoshinaga, T.; Suetsugu, K.; Kashiwaya, K.; Asaue, H. Controls on radon emission from granite as evidenced by compression testing to failure. Geophys. J. Int. 2015, 203, 428–436. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Harrison, R.G.; Aplin, K.L.; Rycroft, M.J. Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. Sol. Terr. Phys. 2010, 72, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.; Aplin, K.; Rycroft, M. Brief Communication: Earthquake-cloud coupling through the global atmospheric electric circuit. Nat. Hazards Earth Syst. Sci. Discuss. 2013, 1, 7271–7283. [Google Scholar] [CrossRef] [Green Version]
- Rycroft, M.J.; Nicoll, K.A.; Aplin, K.L.; Giles Harrison, R. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol. Terr. Phys. 2012, 90–91, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. Space Phys. 2011, 116, 317. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Shvets, A.V.; Hayakawa, M.; Molchanov, O.A.; Ando, Y. A study of ionospheric response to regional seismic activity by VLF radio sounding. Phys. Chem. Earth Parts A/B/C 2004, 29, 627–637. [Google Scholar] [CrossRef]
- Liperovsky, V.A.; Meister, C.V.; Liperovskaya, E.V.; Vasil’eva, N.E.; Alimov, O. On spread-E-s effects in the ionosphere before earthquakes. Nat. Hazards Earth Syst. Sci. 2005, 5, 59–62. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Chmyrev, V.M.; Yaschenko, A.K. Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. J. Atmos. Sol. Terr. Phys. 2005, 67, 1259–1268. [Google Scholar] [CrossRef]
- Zhang, X.M.; Shen, X.H. The development in seismo-ionospheric coupling mechanism. Prog. Earthq. Sci. Chin. Ed. 2022, 52, 193–202. [Google Scholar]
- Liu, J.Y.; Chen, C.H.; Sun, Y.Y.; Chen, C.H.; Tsai, H.F.; Yen, H.Y.; Chum, J.; Lastovicka, J.; Yang, Q.S.; Chen, W.S.; et al. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan. Geophys. Res. Lett. 2016, 43, 1759–1765. [Google Scholar] [CrossRef]
- Huang, Q.; Han, P.; Hattori, K.; Ren, H. Electromagnetic Signals Associated With Earthquakes. In Seismoelectric Exploration; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 415–436. [Google Scholar]
- Chen, C.-H.; Sun, Y.-Y.; Lin, K.; Zhou, C.; Xu, R.; Qing, H.; Gao, Y.; Chen, T.; Wang, F.; Yu, H.; et al. A new instrumental array in Sichuan, China, to monitor vibrations and perturbations of the lithosphere, atmosphere, and ionosphere. Surv. Geophys. 2021, 42, 1425–1442. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Zhuang, J.; Chen, C.; Liu, J.; Yoshida, S. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys. J. Int. 2017, 208, 482–490. [Google Scholar] [CrossRef]
- Katsumata, K. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M = 9.0). Earth Planets Space 2011, 63, 36. [Google Scholar] [CrossRef] [Green Version]
- Nanjo, K.Z.; Hirata, N.; Obara, K.; Kasahara, K. Decade-scale decrease inb value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes. Geophys. Res. Lett. 2012, 39, 304. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A.; Nagao, T.; Kamogawa, M.; Tanaka, H.; Uyeda, S. Minimum of the order parameter fluctuations of seismicity before major earthquakes in Japan. Proc. Natl. Acad. Sci. USA 2013, 110, 13734–13738. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Obara, K.; Igarashi, T.; Tsuruoka, H.; Nakagawa, S.; Hirata, N. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 2012, 335, 705–708. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Wen, S.; Liu, J.-Y.; Hattori, K.; Han, P.; Hobara, Y.; Wang, C.-H.; Yeh, T.-K.; Yen, H.-Y. Surface displacements in Japan before the 11 March 2011 M9.0 Tohoku-Oki earthquake. J. Asian Earth Sci. 2014, 80, 165–171. [Google Scholar] [CrossRef]
- Ito, Y.; Hino, R.; Kido, M.; Fujimoto, H.; Osada, Y.; Inazu, D.; Ohta, Y.; Iinuma, T.; Ohzono, M.; Miura, S.; et al. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 2013, 600, 14–26. [Google Scholar] [CrossRef]
- Hattori, K.; Han, P. Investigation on preparation process of the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0) by GPS data. In Proceedings of the 2014 American Geophysics Union Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Orihara, Y.; Kamogawa, M.; Nagao, T. Preseismic Changes of the level and temperature of confined groundwater related to the 2011 Tohoku earthquake. Sci. Rep. 2014, 4, 6907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, P.; Hattori, K.; Huang, Q.H.; Hirooka, S.; Yoshino, C. Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena. J. Asian Earth Sci. 2016, 129, 13–21. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Xu, G.J.; Ashida, R.; Chen, C.H.; Febriani, F.; Yamaguchi, H. Further investigations of geomagnetic diurnal variations associated with the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). J. Asian Earth Sci. 2015, 114, 321–326. [Google Scholar] [CrossRef]
- Ogata, Y.; Akaike, H.; Katsura, K. The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process. Ann. Inst. Stat. Math. 1982, 34, 373–387. [Google Scholar] [CrossRef]
- Zhuang, J.; Matsu’ura, M.; Han, P. Critical zone of the branching crack model for earthquakes: Inherent randomness, earthquake predictability, and precursor modelling. Eur. Phys. J. Spec. Top. 2021, 230, 409–424. [Google Scholar] [CrossRef]
Observation | Leading Time | Characteristic | Reference |
---|---|---|---|
Seismic activity | 23 years | Seismic quiescence in rupture region | (Katsumata, 2011 [211]) |
6 years | Decade-scale decrease in b value | (Nanjo et al., 2012 [212]) | |
A few months 1 month | Seismicity exhibited distinct minima Foreshock sequence and slow slip | (Sarlis et al., 2013 [213]) (Kato et al., 2012 [214]) | |
Deformation | 2 months 1 month | Crustal movement changes Slow slip event | (Chen et al., 2014 [215]) (Ito et al., 2013 [216]) |
1 month | GPS surface motion | (Hattori et al., 2014 [217]) | |
Fluid | 3 months | Groundwater level decrease | (Orihara et al.,2016 [218]) |
Geomagnetism | 2 months | Geomagnetic diurnal variation changes | (Han et al., 2016 [219]) |
Ionosphere | 40 min | TEC enhancement | (Heki, 2011 [140]) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Han, P.; Hattori, K. Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review. Remote Sens. 2022, 14, 5893. https://doi.org/10.3390/rs14225893
Chen H, Han P, Hattori K. Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review. Remote Sensing. 2022; 14(22):5893. https://doi.org/10.3390/rs14225893
Chicago/Turabian StyleChen, Hongyan, Peng Han, and Katsumi Hattori. 2022. "Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review" Remote Sensing 14, no. 22: 5893. https://doi.org/10.3390/rs14225893
APA StyleChen, H., Han, P., & Hattori, K. (2022). Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review. Remote Sensing, 14(22), 5893. https://doi.org/10.3390/rs14225893