A Noise De-Correlation Based Sun Glint Correction Method and Its Effect on Shallow Bathymetry Inversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Areas and Data Sets
2.2. Data Processing
2.3. Sun Glint Correction Models
2.3.1. A Noise De-Correlation Based Sun Glint Correction Method
2.3.2. Other Models
2.4. Shallow Water Bathymetry Models
2.4.1. Log-Linear Model
2.4.2. Stumpf Model
2.4.3. Accuracy Evaluation Methods
2.5. Spectral Fidelity Assessment Indexes
- Correlation Coefficient (CC).
- Error.
- Spectral Angle Mapper (SAM).
3. Results
3.1. Comparison of Visual Effect
3.2. Spectral Fidelity Analysis
3.3. Effect of Sun Glint Correction on Bathymetric Inversion Results in Different Water Depth Ranges
3.3.1. Extremely Shallow Water Condition
3.3.2. Shallow Water 2–11 m
3.3.3. Shallow Water 11–20 m
3.3.4. Multi-Depth Range Condition
3.4. Effect of Sun Glint Correction on Water Depth Inversion of Pixels with Sun Glint and without Sun Glint
4. Discussion
4.1. The Effect of Spatial Resolution on Glint Correction
4.2. Parameter Settings
4.3. Repetitive Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashphaq, M.; Srivastava, P.K.; Mitra, D. Review of near-shore satellite-derived bathymetry: Classification and account of five decades of coastal bathymetry research. J. Ocean Eng. Sci. 2021, 6, 340–359. [Google Scholar] [CrossRef]
- Geyman, E.C.; Maloof, A.C. A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type. Earth Space Sci. 2019, 6, 527–537. [Google Scholar] [CrossRef]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kuster, T.; Phinn, S.; Mumby, P.J.; Barrilero, O.; Laporte, J.; Koetz, B. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- Olayinka, I.C.; Knudby, A. Satellite-derived bathymetry using a radiative transfer-based method: A comparison of different atmospheric correction methods. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019. [Google Scholar]
- Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y.; Zhang, J. Shallow water bathymetry based on inherent optical properties using high spatial resolution multispectral imagery. Remote Sens. 2020, 12, 3027. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Zhang, J.; Zhang, Z.; Wang, J. Progress in Shallow Water Depth Mapping from Optical Remote Sensing. Adv. Mar. Sci. 2018, 36, 331–351. [Google Scholar]
- Zhang, H.; Wang, M. Evaluation of sun glint models using MODIS measurements. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 492–506. [Google Scholar] [CrossRef]
- Muslim, A.M.; Chong, W.S.; Safuan, C.D.M.; Hossain, M.S. Coral reef mapping of UAV: A comparison of sun glint correction methods. Remote Sens. 2019, 11, 2422. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: A Review of Methods for Visible and Near-Infrared Wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Zou, B. A method to remove sun glint in depth derivation from World View-2 remote sensing images. Mar. For. 2015, 32, 53–57. [Google Scholar]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Mobley, C.D.; Overstreet, B.T. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows. Geophys. Res. Earth Surf. 2017, 122, 1715–1741. [Google Scholar] [CrossRef]
- Bréon, F.M.; Henriot, N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geophys. Res. Ocean. 2006, 111, C06005. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Andréfouët, S.; Tyler, M.R. Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1724–1729. [Google Scholar] [CrossRef]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Goodman, J.A.; Lee, Z.P.; Ustin, S.L. Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: A case study in Kaneohe Bay. Hawaii. Appl. Opt. 2008, 47, F1–F11. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Vahtmae, E.; Praks, J. A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal. Remote Sens. Environ. 2009, 113, 2267–2274. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Dong, P.; Liang, D. SGTD: Structure gradient and texture decorrelating regularization for image decomposition. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013. [Google Scholar]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2016, 54, 178–188. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4729–4743. [Google Scholar] [CrossRef]
- Duan, P.; Lai, J.; Kang, J.; Kang, X.; Ghamisi, P.; Li, S. Texture-aware total variation-based removal of sun glint in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 359–372. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite -2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 Lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Meyer, Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations; American Mathematical Society: Providence, RI, USA, 2001; pp. 22–23. [Google Scholar]
- Chen, T.; Yin, W.; Zhou, X.; Comaniciu, D.; Huang, T. Total variation models for variable lighting face recognition. IEEE Trans. Pattern. Anal. Mac. Int. 2006, 28, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, C.; Xu, Y.; Jia, J. Image smoothing via 0 gradient minimization. ACM Trans. Graphics 2011, 30, 174. [Google Scholar]
- Li, X.; Yan, Q.; Yang, X.; Jia, J. Structure extraction from texture via relative total variation. ACM Trans. Graphics 2012, 31, 139. [Google Scholar]
Area | Satellite Image | Actual Water Depth Data Type | Resolution (m) | Spatial Domain (pixel) | Acquisition Time |
---|---|---|---|---|---|
Dongdao Island | Sentinel-2 | Single-beam | 10 | 328 × 328 | 13 February 2021 |
Tiexian Jiao | WorldView-2 | ICESat-2 | 2 | 668 × 668 | 23 May 2022 |
Taiping Island | WorldView-2 | ICESat-2 | 2 | 896 × 896 | 23 May 2022 |
Area | Overall Training Points | Overall Validation Points | With Sun Glint: Training Points | With Sun Glint: Validation Points | Without Sun Glint: Training Points | Without Sun Glint: Validation Points |
---|---|---|---|---|---|---|
Dongdao Island | 215 | 190 | 114 | 93 | 101 | 97 |
Tiexian Jiao | 85 | 80 | 34 | 31 | 51 | 49 |
Taiping Island | 789 | 612 | 591 | 333 | 198 | 279 |
Pixels of All Types | With Sun Glint | Without Sun Glint | |||||
---|---|---|---|---|---|---|---|
Accuracy | Method | Log-Linear | Stumpf | Log-Linear | Stumpf | Log-Linear | Stumpf |
0–2 m: MRE/% | Original Image | 40.0 | 64.5 | 55 | 79.5 | 41.1 | 43 |
Hedley | 59.3 | 65.2 | 77.2 | 80.4 | 43.5 | 44.2 | |
Goodman | 57.9 | 65.8 | 93.4 | 80.0 | 42.5 | 43.7 | |
ND-SGC | 38.0 | 61.9 | 30.5 | 76.2 | 38.9 | 41.4 | |
2–10 m: MRE/% | Original Image | 13.1 | 20.1 | 16.0 | 23.6 | 17.6 | 19.9 |
Hedley | 14.4 | 17.4 | 16.1 | 23 | 17.8 | 27.7 | |
Goodman | 13.6 | 16.0 | 15.7 | 21.4 | 17.7 | 17.9 | |
ND-SGC | 11.8 | 18.7 | 14.4 | 22.3 | 15.4 | 19.2 | |
0–2 m: MAE/m | Original Image | 0.36 | 0.48 | 0.39 | 0.52 | 0.40 | 0.41 |
Hedley | 0.46 | 0.49 | 0.50 | 0.53 | 0.41 | 0.41 | |
Goodman | 0.45 | 0.49 | 0.49 | 0.53 | 0.42 | 0.41 | |
ND-SGC | 0.36 | 0.47 | 0.36 | 0.49 | 0.40 | 0.42 | |
2–10 m: MAE/m | Original Image | 0.84 | 1.23 | 0.98 | 1.38 | 0.91 | 1.63 |
Hedley | 0.94 | 1.09 | 1.01 | 1.31 | 0.94 | 1.96 | |
Goodman | 0.89 | 1.01 | 0.98 | 1.25 | 0.92 | 0.92 | |
ND-SGC | 0.76 | 1.18 | 0.88 | 1.33 | 0.81 | 0.99 |
Pixels of All Types | With Sun Glint | Without Sun Glint | |||||
---|---|---|---|---|---|---|---|
Method | MRE/% | MAE/m | MRE/% | MAE/m | MRE/% | MAE/m | |
2–11 m | Original Image | 22.1 | 1.60 | 39.4 | 2.12 | 33.1 | 1.83 |
Hedley | 27.4 | 1.91 | 32.0 | 1.89 | 40.5 | 2.02 | |
Goodman | 23.4 | 1.63 | 28.2 | 1.72 | 34.3 | 1.76 | |
ND-SGC | 21.9 | 1.60 | 26.9 | 1.58 | 30.8 | 1.67 | |
11–20 m | Original Image | 14.9 | 2.38 | 12.7 | 1.95 | 11.6 | 1.85 |
Hedley | 14.1 | 2.26 | 11.8 | 1.80 | 13.4 | 2.14 | |
Goodman | 15.2 | 2.45 | 12.9 | 1.98 | 14.1 | 2.25 | |
ND-SGC | 9.4 | 1.49 | 8.7 | 1.24 | 9.9 | 1.58 | |
2–20 m | Original Image | 21.5 | 2.10 | 24.5 | 1.99 | 22.2 | 1.81 |
Hedley | 21.5 | 2.11 | 20.8 | 1.82 | 26.8 | 2.09 | |
Goodman | 20.1 | 2.08 | 19.7 | 1.86 | 24.1 | 2.02 | |
ND-SGC | 19.6 | 1.67 | 16.7 | 1.36 | 20.2 | 1.61 |
Pixels of All Types | With Sun Glint | Without Sun Glint | |||||
---|---|---|---|---|---|---|---|
Method | MRE/% | MAE/m | MRE/% | MAE/m | MRE/% | MAE/m | |
2–11 m | Original Image | 28.2 | 2.6 | 32.8 | 2.68 | 28.7 | 2.57 |
Hedley | 24.1 | 2.3 | 29.4 | 2.50 | 25.9 | 2.36 | |
Goodman | 22.1 | 2.15 | 28.1 | 2.36 | 23.6 | 2.18 | |
ND-SGC | 21.9 | 2.13 | 25.0 | 2.15 | 21.5 | 2.00 | |
11–20 m | Original Image | 31.0 | 2.37 | 37.0 | 2.63 | 29.9 | 2.48 |
Hedley | 26.0 | 2.06 | 32.8 | 2.68 | 26.8 | 2.28 | |
Goodman | 23.2 | 1.96 | 31.4 | 2.28 | 24.2 | 2.09 | |
ND-SGC | 23.1 | 1.84 | 28.0 | 2.12 | 22.6 | 1.97 | |
2–20 m | Original Image | 28.1 | 2.60 | 32.6 | 2.63 | 28.4 | 2.57 |
Hedley | 24.0 | 2.30 | 29.2 | 2.45 | 25.6 | 2.36 | |
Goodman | 22.0 | 2.15 | 27.9 | 2.33 | 23.3 | 2.18 | |
ND-SGC | 21.8 | 2.13 | 24.9 | 2.12 | 21.2 | 1.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, A.; Zhang, J.; Ma, Y.; Zhang, X. A Noise De-Correlation Based Sun Glint Correction Method and Its Effect on Shallow Bathymetry Inversion. Remote Sens. 2022, 14, 5981. https://doi.org/10.3390/rs14235981
Cui A, Zhang J, Ma Y, Zhang X. A Noise De-Correlation Based Sun Glint Correction Method and Its Effect on Shallow Bathymetry Inversion. Remote Sensing. 2022; 14(23):5981. https://doi.org/10.3390/rs14235981
Chicago/Turabian StyleCui, Aijun, Jingyu Zhang, Yi Ma, and Xi Zhang. 2022. "A Noise De-Correlation Based Sun Glint Correction Method and Its Effect on Shallow Bathymetry Inversion" Remote Sensing 14, no. 23: 5981. https://doi.org/10.3390/rs14235981
APA StyleCui, A., Zhang, J., Ma, Y., & Zhang, X. (2022). A Noise De-Correlation Based Sun Glint Correction Method and Its Effect on Shallow Bathymetry Inversion. Remote Sensing, 14(23), 5981. https://doi.org/10.3390/rs14235981