An Enhanced Image Patch Tensor Decomposition for Infrared Small Target Detection
Abstract
:1. Introduction
- (1)
- Background suppression-based methods
- (2)
- Human visual system (HVS)-based methods
- (3)
- Optimization model-based methods
- (1)
- To estimate the background more accurately, we use the Laplace operator to approximate the background tensor rank; it assigns different weights to different singular values.
- (2)
- A new small target aware prior. We combine local gradient features and edge and highlighted area indicators to enhance the small targets and suppress those sharp edges.
- (3)
- We introduce the Laplace operator and structural prior into the IPT model and use the ADMM to solve our model.
2. Notations
3. Proposed Model
3.1. Image Patch Tensor (IPT) Model
3.2. Laplace-Based Rank Approximation
3.3. Construction of the Local Prior
- A.
- Gradient feature information
- B.
- Edge and highlighted area indicator
- C.
- Local prior calculation
3.4. The Proposed Enhanced IPT Model
3.5. Model Solution
- (1)
- (2)
- To solve the low-rank tensor , subproblem (26) can be expressed in the form
Algorithm 1 Solution process for model (28) |
Input: |
Output: |
Step 1. Compute (, [ ], 3) |
Step 2. Compute each forward slice of as: |
for do |
(1) SVD. |
(2) Calculate by Equation (30) |
(3) |
end for |
for do |
end for |
Step 3. Compute (, [ ], 3) |
Algorithm 2 The proposed model solved by ADMM |
Input: |
Output: |
Initialization: |
while and do |
update by (27); |
update by Algorithm 1 |
update by (22); |
update by (32); |
update by (33); |
update |
end while |
3.6. Whole Process of the Proposed Method
- (1)
- (2)
- Patch tensor formulation. Sliding a window of size over original image from top left to bottom right, we stack the paths into the original image 3D tensor . Similarly, the prior weight tensor can be constructed.
- (3)
- The input tensor is decomposed into a background tensor and a target tensor by using ADMM in Algorithm 2.
- (4)
- The 2D background image and target image can be calculated from the background tensor and target tensor by employing 1D median filter on the overlapping positions.
4. Experiments and Results
4.1. Evaluation Metrics
4.2. Parameters Analysis
4.3. Comparative Evaluation
4.4. Robustness in Different Scenes
4.5. Computation Time Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1 T-SVD for a three-order tensor |
Input: |
Output: T-SVD components and of |
Step 1. Calculate (, [ ], 3) |
Step 2. Calculate each frontal slice and from through |
for , ⋯, do |
end for |
for , ⋯, do |
end for |
Step 3. Calculate (, [ ], 3), (, [ ], 3), (, [ ], 3) |
References
- Liu, X.; Zuo, Z. A Dim Small Infrared Moving Target Detection Algorithm Based on Improved Three-Dimensional Directional Filtering. In Proceedings of the Chinese Conference on Image and Graphics Technologies, Beijing, China, 2–3 April 2013. [Google Scholar]
- Grossi, E.; Lops, M.; Venturino, L. A novel dynamic programming algorithm for track-before-detect in radar systems. IEEE Trans. Signal Process. 2013, 61, 2608–2619. [Google Scholar] [CrossRef]
- Li, B.; Xu, Z.; Zhang, J.; Wang, X.; Fan, X. Dim-Small Target Detection Based on Adaptive Pipeline Filtering. Math. Probl. Eng. 2020, 2020, 8234349. [Google Scholar] [CrossRef]
- Bae, T.W.; Lee, S.H.; Sohng, K.I. Small target detection using the Bilateral Filter based on Target Similarity Index. IEICE Electron. Express 2010, 7, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, S.D.; Meng, H.E.; Ronda, V.; Chan, P. Max-Mean and Max-Median Filters for Detection of Small-Targets. In Proceedings of the SPIE’s International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, USA, 18–23 July 1999. [Google Scholar]
- Bae, T.W.; Kim, B.I.; Kim, Y.C.; Ahn, S.H. Jamming effect analysis of infrared reticle seeker for directed infrared countermeasures. Infrared Phys. Technol. 2012, 55, 431–441. [Google Scholar] [CrossRef]
- Tom, V.T.; Peli, T.; Leung, M.; Bondaryk, J.E. Morphology-based algorithm for point target detection in infrared backgrounds. In Proceedings of the Signal and Data Processing of Small Targets 1993, Orlando, FL, USA, 12–14 April 1993; pp. 2–11. [Google Scholar]
- Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recognit. 2010, 43, 2145–2156. [Google Scholar] [CrossRef]
- Shao, Z.; Zhu, X.; Liu, J. Morphology infrared image target detection algorithm optimized by genetic theory. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1299–1304. [Google Scholar]
- Song, Q.; Wang, Y.; Dai, K.; Bai, K. Single frame infrared image small target detection via patch similarity propagation based background estimation. Infrared Phys. Technol. 2020, 106, 103197. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; He, Y.; Zhang, T.; Peng, A.Z. Structure-Adaptive Clutter Suppression for Infrared Small Target Detection: Chain-Growth Filtering. Remote Sens. 2019, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A Local Contrast Method for Small Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Qin, Y.; Li, B. Effective Infrared Small Target Detection Utilizing a Novel Local Contrast Method. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1890–1894. [Google Scholar] [CrossRef]
- Hong, Z.; Lei, Z.; Ding, Y.; Hao, C. Infrared small target detection based on local intensity and gradient properties. Infrared Phys. Technol. 2017, 89, 88–96. [Google Scholar]
- Wu, L.; Ma, Y.; Fan, F.; Wu, M.; Huang, J. A Double-Neighborhood Gradient Method for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1476–1480. [Google Scholar] [CrossRef]
- Han, J.; Moradi, S.; Faramarzi, I.; Liu, C.; Zhao, Q. A Local Contrast Method for Infrared Small-Target Detection Utilizing a Tri-Layer Window. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1822–1826. [Google Scholar] [CrossRef]
- Nasiri, M.; Chehresa, S. Infrared small target enhancement based on variance difference. Infrared Phys. Technol. 2017, 82, 107–119. [Google Scholar] [CrossRef]
- Bai, X.; Bi, Y. Derivative Entropy-Based Contrast Measure for Infrared Small-Target Detection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2452–2466. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared Patch-Image Model for Small Target Detection in a Single Image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Gu, S.; Liu, Y.; Zuo, W.; Zhang, W.; Zhang, L.; Yuan, X. Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction. IEEE Trans. Image Process. 2016, 25, 4842–4857. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wu, Y.; Song, Y. Infrared small target and background separation via column-wise weighted robust principal component analysis. Infrared Phys. Technol. 2016, 77, 421–430. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared Small Target Detection via Non-Convex Rank Approximation Minimization Joint l2,1 Norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wu, H.; Liu, Y.; Peng, L.; Yang, C.; Peng, Z. Infrared Small Target Detection Based on Non-Convex Optimization with Lp-Norm Constraint. Remote Sens. 2019, 11, 559. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Peng, Z.; Kong, D.; Zhang, P.; He, Y. Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Z.; Kong, D.; He, Y. Infrared Dim and Small Target Detection Based on Stable Multisubspace Learning in Heterogeneous Scene. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5481–5493. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, Z.; Wu, H.; He, Y.; Li, C.; Yang, C. Infrared small target detection via self-regularized weighted sparse model. Neurocomputing 2021, 420, 124–148. [Google Scholar] [CrossRef]
- Yimian, D.; Yiquan, W. Reweighted Infrared Patch-Tensor Model with Both Nonlocal and Local Priors for Single-Frame Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar]
- Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Zhang, L.; Huang, S.; Peng, Z. Infrared Small Target Detection via Non-Convex Tensor Rank Surrogate Joint Local Contrast Energy. Remote Sens. 2020, 12, 1520. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-resolution mapping based on spatial–spectral correlation for spectral imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2256–2268. [Google Scholar] [CrossRef]
- Shang, X.; Song, M.; Wang, Y.; Yu, C.; Yu, H.; Li, F.; Chang, C.I. Target-constrained interference-minimized band selection for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6044–6064. [Google Scholar] [CrossRef]
- Chen, X.; Xie, C.; Tan, M.; Zhang, L.; Hsieh, C.J.; Gong, B. Robust and Accurate Object Detection via Adversarial Learning. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16617–16626. [Google Scholar]
- Dai, X.; Jiang, Z.; Wu, Z.; Bao, Y.; Wang, Z.; Liu, S.; Zhou, E. General Instance Distillation for Object Detection. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 7838–7847. [Google Scholar]
- Oveis, A.H.; Giusti, E.; Ghio, S.; Martorella, M. A Survey on the Applications of Convolutional Neural Networks for Synthetic Aperture Radar: Recent Advances. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 18–42. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Wang, K.; Du, S.; Liu, C.; Cao, Z. Interior Attention-Aware Network for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5002013. [Google Scholar] [CrossRef]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target detection. arXiv 2022, arXiv:2106.00487. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Wang, H. Infrared dim and small target detection based on denoising autoencoder network. Mob. Netw. Appl. 2020, 25, 1469–1483. [Google Scholar] [CrossRef]
- Kong, X.; Yang, C.; Cao, S.; Li, C.; Peng, Z. Infrared Small Target Detection via Nonconvex Tensor Fibered Rank Approximation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5000321. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, R.; Yin, W.; Su, Z. Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 2017, 9, 601–624. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ely, G.; Aeron, S.; Hao, N.; Kilmer, M. Novel methods for multilinear data completion and de-noising based on tensor-SVD. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Sun, W.W.; Lu, J.; Liu, H.; Cheng, G. Provable sparse tensor decomposition. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2017, 79, 899–916. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Song, B.; Wang, D.; Guo, L. An effective infrared small target detection method based on the human visual attention. Infrared Phys. Technol. 2018, 95, 128–135. [Google Scholar] [CrossRef]
- Peng, D.; Hamdulla, A. Infrared Small Target Detection Using Homogeneity-Weighted Local Contrast Measure. IEEE Geosci. Remote Sens. Lett. 2019, 17, 514–518. [Google Scholar]
- Deng, H.; Sun, X.; Liu, M.; Ye, C. Infrared small-target detection using multiscale gray difference weighted image entropy. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 60–72. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Small Infrared Target Detection Based on Weighted Local Difference Measure. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4204–4214. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, C.; Liu, B.X.; Zhang, Y. A Kernel-Based Nonparametric Regression Method for Clutter Removal in Infrared Small-Target Detection Applications. IEEE Geosci. Remote Sens. Lett. 2010, 7, 469–473. [Google Scholar] [CrossRef]
- Zhu, H.; Ni, H.; Liu, S.; Xu, G.; Deng, L. Tnlrs: Target-aware non-local low-rank modeling with saliency filtering regularization for infrared small target detection. IEEE Trans. Image Process. 2020, 29, 9546–9558. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.; Shan, T.; Li, W.; Ma, P.; Tao, R. Infrared Dim and Small Target Detection Based on Greedy Bilateral Factorization in Image Sequences. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3394–3408. [Google Scholar] [CrossRef]
- Xu, W.H.; Zhao, X.L.; Ji, T.Y.; Miao, J.Q.; Ma, T.H.; Wang, S.; Huang, T.Z. Laplace function based nonconvex surrogate for low-rank tensor completion. Signal Process. Image Commun. 2019, 73, 62–69. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Wang, X.; Shen, F.; Fei, C. Edge and Corner Awareness-Based Spatial-Temporal Tensor Model for Infrared Small-Target Detection. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10708–10724. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J.; Zhu, Z.; Yao, W.; Wu, S. Weighted guided image filtering. IEEE Trans. Image Process. 2015, 24, 120–129. [Google Scholar]
- Fang, H.; Chen, M.; Liu, X.; Yao, S. Infrared Small Target Detection with Total Variation and Reweighted Regularization. Math. Probl. Eng. 2020, 2020, 1529704. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Wu, Y.; Dai, Y.; Wang, P. Detection of small target using schatten 1/2 quasi-norm regularization with reweighted sparse enhancement in complex infrared scenes. Remote Sens. 2019, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L. Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision. Int. J. Comput. Vis. 2017, 121, 183–208. [Google Scholar] [CrossRef]
- Wang, H.; Yang, F.; Zhang, C.; Ren, M. Infrared small target detection based on patch image model with local and global analysis. Int. J. Image Graph. 2018, 18, 1850002. [Google Scholar] [CrossRef]
- Hale, E.T.; Yin, W.; Zhang, Y. Fixed-point continuation for ℓ1-minimization: Methodology and convergence. SIAM J. Optim. 2008, 19, 1107–1130. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, L.; Wei, S.; Li, B.; Xi, Y. Tensor Factorization-based Particle Swarm Optimization for Large-Scale Many-Objective Problems. Swarm Evol. Comput. 2021, 69, 100995. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Wang, Y.; Dong, W.; Chong, P.; He, G. Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5366–5380. [Google Scholar] [CrossRef]
- Jie, L.; He, Z.; Chen, Z.; Lei, S. Tiny and Dim Infrared Target Detection Based on Weighted Local Contrast. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1780–1784. [Google Scholar]
- Hui, B.; Song, Z.; Fan, H.; Zhong, P.; Hu, W.; Zhang, X.; Ling, J.; Su, H.; Jin, W.; Zhang, Y.; et al. A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background. China Sci. Data 2020, 5, 291–302. [Google Scholar]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric Contextual Modulation for Infrared Small Target Detection. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 949–958. [Google Scholar]
- Wang, H.; Zhou, L.; Wang, L. Miss Detection vs. False Alarm: Adversarial Learning for Small Object Segmentation in Infrared Images. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October– 2 November 2019; pp. 8508–8517. [Google Scholar]
- Kilmer, M.E.; Martin, C.D. Factorization strategies for third-order tensors. Linear Algebra Appl. 2011, 435, 641–658. [Google Scholar] [CrossRef]
Notation | Instruction |
---|---|
scalar/vector/matrix/tensor | |
(,:,:)/(:,,:)/(:,:,) or | the ith horizontal slice/lateral slice/frontal slice of tensor |
the -th iteration of | |
norm of tensor , which is the number of nonzero elements | |
norm of tensor , which is the absolute sum of all elements in | |
Frobenius norm of tensor , which is the root of the sum of the absolute values of the squares of the tensor elements | |
nuclear norm of tensor , which is the sum of all the singular values | |
=(, [ ], 3)/ = ( | fast Fourier transform of /inverse Fourier transform of |
Frames | Length | Target and Background Description | |
---|---|---|---|
Seq.1 | 100 | 256 × 256 | Single target, ground background |
Seq.2 | 100 | 256 × 256 | Single target, open space background |
Seq.3 | 150 | 256 × 256 | Single target, open space background |
Seq.4 | 150 | 256 × 256 | Single target, open space background |
Seq.5 | 70 | 256 × 256 | Single target, ground background |
Seq.6 | 150 | 256 × 256 | Single target, ground background |
Methods | Parameter Settings |
---|---|
Top-hat [7] | Structure pattern: square, size |
WLCM [64] | Neighbourhood structure: |
IPI [19] | Patch size: , sliding step: 10, , |
SMSL [25] | Patch size: , sliding step: 30, , |
RIPT [27] | Patch size: , sliding step: 10, , , |
PSTNN [28] | Patch size: , sliding step: 40, , |
LogTFNN [43] | Patch size: , sliding step: 40, , |
Proposed | Patch size: , sliding step: 40, , |
Method | Seq.1 | Seq.2 | Seq.3 | Seq.4 | Seq.5 | Seq.6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BSF | SCRG | BSF | SCRG | BSF | SCRG | BSF | SCRG | BSF | SCRG | BSF | SCRG | |
Top-hat | 2.62 | 2.28 | 4.67 | 5.16 | 4.82 | 3.36 | 4.84 | 7.46 | 5.08 | 4.53 | 4.17 | 3.82 |
WLCM | 5.93 | 8.76 | 8.16 | 18.22 | 8.20 | 9.15 | 9.20 | 14.20 | 10.12 | 3.80 | 8.15 | 2.85 |
IPI | 11.10 | 4.59 | 12.02 | 27.00 | 15.65 | 13.43 | 13.05 | 17.97 | 17.66 | 14.28 | 17.12 | 17.85 |
SMSL | 31.64 | 18.50 | 8.50 | 30.17 | 55.43 | 18.23 | 37.68 | 27.69 | 82.02 | 14.84 | 115.86 | 18.81 |
RIPT | 10.21 | 13.26 | 8.71 | 19.91 | 14.29 | 10.61 | 13.74 | 17.49 | 14.82 | 10.08 | 11.90 | 10.31 |
PSTNN | 6.37 | 9.25 | 13.20 | 30.19 | 64.66 | 17.38 | 47.97 | 28.16 | 32.87 | 13.52 | 34.67 | 18.16 |
LogTFNN | 3.35 | 3.65 | 9.54 | 20.59 | 6.17 | 3.89 | 9.33 | 8.97 | 106.78 | 12.60 | 97.86 | 16.06 |
Proposed | 75.63 | 29.89 | 59.57 | 53.18 | 269.76 | 25.14 | 371.86 | 46.19 | 327.44 | 20.11 | 107.98 | 22.75 |
Top-Hat | WLCM | IPI | SMSL | RIPT | LogTFNN | PSTNN | Proposed | |
---|---|---|---|---|---|---|---|---|
Seq.1 | 0.0041 | 1.9749 | 4.1769 | 0.1681 | 0.7069 | 1.2196 | 0.2093 | 0.4934 |
Seq.2 | 0.0038 | 2.0203 | 4.0588 | 0.1792 | 0.6564 | 1.2241 | 0.2108 | 0.4341 |
Seq.3 | 0.0026 | 2.0071 | 4.0922 | 0.2792 | 0.6307 | 1.2152 | 0.1921 | 0.3925 |
Seq.4 | 0.0039 | 1.9492 | 4.2002 | 0.3444 | 0.5800 | 1.2780 | 0.1804 | 0.4050 |
Seq.5 | 0.0037 | 1.9568 | 4.5251 | 0.2464 | 0.5607 | 1.2455 | 0.2037 | 0.3734 |
Seq.6 | 0.0035 | 1.9627 | 4.0498 | 0.2641 | 0.5534 | 1.3670 | 0.1853 | 0.5612 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Huang, Z.; Song, Q.; Bai, K.; Li, Z. An Enhanced Image Patch Tensor Decomposition for Infrared Small Target Detection. Remote Sens. 2022, 14, 6044. https://doi.org/10.3390/rs14236044
Lu Z, Huang Z, Song Q, Bai K, Li Z. An Enhanced Image Patch Tensor Decomposition for Infrared Small Target Detection. Remote Sensing. 2022; 14(23):6044. https://doi.org/10.3390/rs14236044
Chicago/Turabian StyleLu, Ziling, Zhenghua Huang, Qiong Song, Kun Bai, and Zhengtao Li. 2022. "An Enhanced Image Patch Tensor Decomposition for Infrared Small Target Detection" Remote Sensing 14, no. 23: 6044. https://doi.org/10.3390/rs14236044
APA StyleLu, Z., Huang, Z., Song, Q., Bai, K., & Li, Z. (2022). An Enhanced Image Patch Tensor Decomposition for Infrared Small Target Detection. Remote Sensing, 14(23), 6044. https://doi.org/10.3390/rs14236044